PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering
- URL: http://arxiv.org/abs/2411.05731v2
- Date: Mon, 27 Jan 2025 18:21:19 GMT
- Title: PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering
- Authors: Junxi Jin, Xiulai Li, Haiping Huang, Lianjun Liu, Yujie Sun, Boyi Liu,
- Abstract summary: 3D Gaussian Splatting (3D-GS) has achieved significant success in real-time, high-quality 3D scene rendering.
However, it faces several challenges, including Gaussian redundancy, limited ability to capture view-dependent effects, and difficulties in handling complex lighting and specular reflections.
We introduce PEP-GS, a perceptually-enhanced framework that dynamically predicts Gaussian attributes, including opacity, color, and covariance.
- Score: 7.1029808965488686
- License:
- Abstract: Recently, 3D Gaussian Splatting (3D-GS) has achieved significant success in real-time, high-quality 3D scene rendering. However, it faces several challenges, including Gaussian redundancy, limited ability to capture view-dependent effects, and difficulties in handling complex lighting and specular reflections. Additionally, methods that use spherical harmonics for color representation often struggle to effectively capture specular highlights and anisotropic components, especially when modeling view-dependent colors under complex lighting conditions, leading to insufficient contrast and unnatural color saturation. To address these limitations, we introduce PEP-GS, a perceptually-enhanced framework that dynamically predicts Gaussian attributes, including opacity, color, and covariance. We replace traditional spherical harmonics with a Hierarchical Granular-Structural Attention mechanism, which enables more accurate modeling of complex view-dependent color effects and specular highlights. By employing a stable and interpretable framework for opacity and covariance estimation, PEP-GS avoids the removal of essential Gaussians prematurely, ensuring a more accurate scene representation. Furthermore, perceptual optimization is applied to the final rendered images, enhancing perceptual consistency across different views and ensuring high-quality renderings with improved texture fidelity and fine-scale detail preservation. Experimental results demonstrate that PEP-GS outperforms state-of-the-art methods, particularly in challenging scenarios involving view-dependent effects, specular reflections, and fine-scale details.
Related papers
- GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SpecGaussian with Latent Features: A High-quality Modeling of the View-dependent Appearance for 3D Gaussian Splatting [11.978842116007563]
Lantent-SpecGS is an approach that utilizes a universal latent neural descriptor within each 3D Gaussian.
Two parallel CNNs are designed to decoder the splatting feature maps into diffuse color and specular color separately.
A mask that depends on the viewpoint is learned to merge these two colors, resulting in the final rendered image.
arXiv Detail & Related papers (2024-08-23T15:25:08Z) - 3iGS: Factorised Tensorial Illumination for 3D Gaussian Splatting [15.059156311856087]
3D Gaussian Splatting, or 3iGS, improves upon 3D Gaussian Splatting (3DGS) rendering quality.
Use of 3D Gaussians as representation of radiance fields has enabled high quality novel view synthesis at real-time rendering speed.
arXiv Detail & Related papers (2024-08-07T13:06:29Z) - Wild-GS: Real-Time Novel View Synthesis from Unconstrained Photo Collections [30.321151430263946]
This paper presents Wild-GS, an innovative adaptation of 3DGS optimized for unconstrained photo collections.
Wild-GS determines the appearance of each 3D Gaussian by their inherent material attributes, global illumination and camera properties per image, and point-level local variance of reflectance.
This novel design effectively transfers the high-frequency detailed appearance of the reference view to 3D space and significantly expedites the training process.
arXiv Detail & Related papers (2024-06-14T19:06:07Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians [18.774112672831155]
3D-GS has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations.
We introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation.
arXiv Detail & Related papers (2024-03-26T17:39:36Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.