LLGS: Unsupervised Gaussian Splatting for Image Enhancement and Reconstruction in Pure Dark Environment
- URL: http://arxiv.org/abs/2503.18640v1
- Date: Mon, 24 Mar 2025 13:05:05 GMT
- Title: LLGS: Unsupervised Gaussian Splatting for Image Enhancement and Reconstruction in Pure Dark Environment
- Authors: Haoran Wang, Jingwei Huang, Lu Yang, Tianchen Deng, Gaojing Zhang, Mingrui Li,
- Abstract summary: We propose an unsupervised multi-view stereoscopic system based on 3D Gaussian Splatting.<n>This system aims to enhance images in low-light environments while reconstructing the scene.<n> Experiments conducted on real-world datasets demonstrate that our system outperforms state-of-the-art methods in both low-light enhancement and 3D Gaussian Splatting.
- Score: 18.85235185556243
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D Gaussian Splatting has shown remarkable capabilities in novel view rendering tasks and exhibits significant potential for multi-view optimization.However, the original 3D Gaussian Splatting lacks color representation for inputs in low-light environments. Simply using enhanced images as inputs would lead to issues with multi-view consistency, and current single-view enhancement systems rely on pre-trained data, lacking scene generalization. These problems limit the application of 3D Gaussian Splatting in low-light conditions in the field of robotics, including high-fidelity modeling and feature matching. To address these challenges, we propose an unsupervised multi-view stereoscopic system based on Gaussian Splatting, called Low-Light Gaussian Splatting (LLGS). This system aims to enhance images in low-light environments while reconstructing the scene. Our method introduces a decomposable Gaussian representation called M-Color, which separately characterizes color information for targeted enhancement. Furthermore, we propose an unsupervised optimization method with zero-knowledge priors, using direction-based enhancement to ensure multi-view consistency. Experiments conducted on real-world datasets demonstrate that our system outperforms state-of-the-art methods in both low-light enhancement and 3D Gaussian Splatting.
Related papers
- LL-Gaussian: Low-Light Scene Reconstruction and Enhancement via Gaussian Splatting for Novel View Synthesis [17.470869402542533]
Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs.
We propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images.
Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%.
arXiv Detail & Related papers (2025-04-14T15:39:31Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering.
Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
We propose a view framework based on 3D Gaussian Splatting, named MCGS, enabling scene reconstruction from sparse input views.
arXiv Detail & Related papers (2024-10-15T08:39:05Z) - GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction [1.7624442706463355]
This paper proposes a novel framework for large-scale scene reconstruction based on 3D Gaussian splatting (3DGS)
For tackling the scalability issue, we split the large scene into multiple cells, and the candidate point-cloud and camera views of each cell are correlated.
We show that our method consistently generates more high-fidelity rendering results than state-of-the-art methods of large-scale scene reconstruction.
arXiv Detail & Related papers (2024-09-19T13:43:31Z) - Gaussian in the Dark: Real-Time View Synthesis From Inconsistent Dark Images Using Gaussian Splatting [23.94465817405213]
3D Gaussian Splatting can synthesize remarkable novel views using consistent multi-view images as input.
However, images captured in dark environments can exhibit considerable brightness variations and multi-view inconsistency.
We propose Gaussian-DK, which produces high-quality renderings without ghosting and floater artifacts.
arXiv Detail & Related papers (2024-08-17T08:05:09Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes [50.534213038479926]
FreeSplat is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.
We propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views.
arXiv Detail & Related papers (2024-05-28T08:40:14Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.