Topology-aware Reinforcement Feature Space Reconstruction for Graph Data
- URL: http://arxiv.org/abs/2411.05742v1
- Date: Fri, 08 Nov 2024 18:01:05 GMT
- Title: Topology-aware Reinforcement Feature Space Reconstruction for Graph Data
- Authors: Wangyang Ying, Haoyue Bai, Kunpeng Liu, Yanjie Fu,
- Abstract summary: Reconstructing a good feature space is essential to augment the AI power of data, improve model generalization, and increase the availability of downstream ML models.
We use topology-aware reinforcement learning to automate and optimize feature space reconstruction for graph data.
Our approach combines the extraction of core subgraphs to capture essential structural information with a graph neural network (GNN) to encode topological features and reduce computing complexity.
- Score: 22.5530178427691
- License:
- Abstract: Feature space is an environment where data points are vectorized to represent the original dataset. Reconstructing a good feature space is essential to augment the AI power of data, improve model generalization, and increase the availability of downstream ML models. Existing literature, such as feature transformation and feature selection, is labor-intensive (e.g., heavy reliance on empirical experience) and mostly designed for tabular data. Moreover, these methods regard data samples as independent, which ignores the unique topological structure when applied to graph data, thus resulting in a suboptimal reconstruction feature space. Can we consider the topological information to automatically reconstruct feature space for graph data without heavy experiential knowledge? To fill this gap, we leverage topology-aware reinforcement learning to automate and optimize feature space reconstruction for graph data. Our approach combines the extraction of core subgraphs to capture essential structural information with a graph neural network (GNN) to encode topological features and reduce computing complexity. Then we introduce three reinforcement agents within a hierarchical structure to systematically generate meaningful features through an iterative process, effectively reconstructing the feature space. This framework provides a principled solution for attributed graph feature space reconstruction. The extensive experiments demonstrate the effectiveness and efficiency of including topological awareness.
Related papers
- A Cosmic-Scale Benchmark for Symmetry-Preserving Data Processing [1.96862953848735]
We benchmark the ability of graph neural networks to simultaneously capture local clustering environments and long-range correlations.
We find that current architectures fail to capture information from long-range correlations as effectively as domain-specific baselines.
arXiv Detail & Related papers (2024-10-27T16:58:48Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Feature Expansion for Graph Neural Networks [26.671557021142572]
We decompose graph neural networks into determined feature spaces and trainable weights.
We theoretically find that the feature space tends to be linearly correlated due to repeated aggregations.
Motivated by these findings, we propose 1) feature subspaces flattening and 2) structural principal components to expand the feature space.
arXiv Detail & Related papers (2023-05-10T13:45:57Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
We propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method.
Our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.
arXiv Detail & Related papers (2022-09-02T02:49:19Z) - Group-wise Reinforcement Feature Generation for Optimal and Explainable
Representation Space Reconstruction [25.604176830832586]
We reformulate representation space reconstruction into an interactive process of nested feature generation and selection.
We design a group-wise generation strategy to cross a feature group, an operation, and another feature group to generate new features.
We present extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our system.
arXiv Detail & Related papers (2022-05-28T21:34:14Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.