論文の概要: Multi-Dimensional Reconfigurable, Physically Composable Hybrid Diffractive Optical Neural Network
- arxiv url: http://arxiv.org/abs/2411.05748v1
- Date: Fri, 08 Nov 2024 18:08:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:53:44.291882
- Title: Multi-Dimensional Reconfigurable, Physically Composable Hybrid Diffractive Optical Neural Network
- Title(参考訳): 多次元再構成可能・物理的に構成可能なハイブリッド拡散型光ニューラルネット
- Authors: Ziang Yin, Yu Yao, Jeff Zhang, Jiaqi Gu,
- Abstract要約: 物理的に構成可能なハイブリッド拡散型ONNシステム(MDR-HDONN)を導入する。
フルシステムの学習性を活用することで、MDR-HDONNは固定化された光学ハードウェアを再利用し、指数関数的に拡張された機能を実現し、タスク適応性を向上させる。
MDR-HDONNは、74倍高速で194倍低エネルギーの様々なタスク適応に対してデジタル比較可能な精度を持つ。
- 参考スコア(独自算出の注目度): 15.804251049405584
- License:
- Abstract: Diffractive optical neural networks (DONNs), leveraging free-space light wave propagation for ultra-parallel, high-efficiency computing, have emerged as promising artificial intelligence (AI) accelerators. However, their inherent lack of reconfigurability due to fixed optical structures post-fabrication hinders practical deployment in the face of dynamic AI workloads and evolving applications. To overcome this challenge, we introduce, for the first time, a multi-dimensional reconfigurable hybrid diffractive ONN system (MDR-HDONN), a physically composable architecture that unlocks a new degree of freedom and unprecedented versatility in DONNs. By leveraging full-system learnability, MDR-HDONN repurposes fixed fabricated optical hardware, achieving exponentially expanded functionality and superior task adaptability through the differentiable learning of system variables. Furthermore, MDR-HDONN adopts a hybrid optical/photonic design, combining the reconfigurability of integrated photonics with the ultra-parallelism of free-space diffractive systems. Extensive evaluations demonstrate that MDR-HDONN has digital-comparable accuracy on various task adaptations with 74x faster speed and 194x lower energy. Compared to prior DONNs, MDR-HDONN shows exponentially larger functional space with 5x faster training speed, paving the way for a new paradigm of versatile, composable, hybrid optical/photonic AI computing. We will open-source our codes.
- Abstract(参考訳): 超並列・高効率コンピューティングに自由空間光波伝搬を利用するDiffractive Optical Neural Network (DONN)は、有望な人工知能(AI)アクセラレーターとして登場した。
しかし、固定された光学構造によるリコンフィギャラビリティの欠如は、動的AIワークロードや進化するアプリケーションに直面した実践的なデプロイを妨げる。
この課題を克服するために、我々は初めて多次元再構成可能なハイブリッド拡散型ONNシステム(MDR-HDONN)を紹介した。
MDR-HDONNは、フルシステムの学習性を活用することで、固定化された光学ハードウェアを再利用し、システム変数の微分学習を通じて、指数関数的に拡張された機能とタスク適応性を実現する。
さらに、MDR-HDONNは、統合フォトニクスの再構成性と自由空間微分システムの超並列性を組み合わせたハイブリッド光/フォトニクス設計を採用する。
MDR-HDONNは、74倍高速で194倍低エネルギーの様々なタスク適応に対して、デジタル比較可能な精度を持つことを示す。
従来のDONNと比較して、MDR-HDONNは5倍高速なトレーニング速度で指数関数空間を指数関数的に拡大し、汎用的で構成可能でハイブリッドな光/フォトニックAIコンピューティングの新しいパラダイムへの道を開く。
私たちはコードをオープンソース化します。
関連論文リスト
- Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
我々は,ハイブリッド電子フォトニックプラットフォーム上で,ダイレクトフィードバックアライメントと呼ばれる多目的でスケーラブルなトレーニングアルゴリズムを実験的に実装した。
光処理ユニットは、このアルゴリズムの中央動作である大規模ランダム行列乗算を最大1500テラOpsで行う。
我々は、ハイブリッド光アプローチの計算スケーリングについて検討し、超深度・広帯域ニューラルネットワークの潜在的な利点を実証する。
論文 参考訳(メタデータ) (2024-09-01T12:48:47Z) - TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge
AI with Compact Slow-Light Electro-Optic Modulator [44.74560543672329]
我々は,TMPOと呼ばれる時間多重化動的フォトニックテンソルアクセラレータを,クロス層デバイス/回路/アーキテクチャのカスタマイズにより提案する。
我々は,368.6TOPSピーク性能,22.3TOPS/Wエネルギー効率,1.2TOPS/mm$2$計算密度を実現した。
この研究は、多層共設計とドメイン固有のカスタマイズの力を示し、将来の電子フォトニクス加速器への道を開く。
論文 参考訳(メタデータ) (2024-02-12T03:40:32Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Forward-Forward Training of an Optical Neural Network [6.311461340782698]
光ファイバにおける多重モード非線形波動伝搬を利用した実験を行い, 光学系を用いたFFAアプローチの実現可能性を示す。
その結果、FFAで訓練された多層NNアーキテクチャに光変換を組み込むことにより、性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-30T16:15:57Z) - Sophisticated deep learning with on-chip optical diffractive tensor
processing [5.081061839052458]
フォトニック集積回路は、電子回路によってもたらされる帯域制限と電力ウォールを緩和するための効率的なアプローチを提供する。
我々は、オンチップ回折により、光畳み込みユニット(OCU)と呼ばれる畳み込み加速度を実装する光学コンピューティングアーキテクチャを提案する。
OCUを基本単位として、光学畳み込みニューラルネットワーク(oCNN)を構築し、分類と回帰という2つの一般的なディープラーニングタスクを実装する。
論文 参考訳(メタデータ) (2022-12-20T03:33:26Z) - Physics-aware Differentiable Discrete Codesign for Diffractive Optical
Neural Networks [12.952987240366781]
本研究は,Diffractive Optical Neural Network (DONN) の効率的なトレーニングを可能にする,新しいデバイス間ハードウェア・ソフトウェア符号フレームワークを提案する。
Gumbel-Softmaxは、現実世界のデバイスパラメータからDONNの前方関数への微分可能な離散マッピングを可能にするために使用される。
その結果,提案手法は従来の量子化法に比べて大きな利点があることがわかった。
論文 参考訳(メタデータ) (2022-09-28T17:13:28Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
フォトニックニューラルネットワークは、電子の代わりに光子を用いて脳にインスパイアされた計算を行う。
我々は、DGNN(diffractive graph neural network)と呼ばれる全光グラフ表現学習アーキテクチャを提案する。
ベンチマークデータベースを用いたノードおよびグラフレベルの分類タスクにおけるDGNN抽出機能の利用を実演し、優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-23T02:29:48Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
集積フォトニクスは優れた位相安定性を提供し、半導体産業によって提供される大規模な製造性に依存することができる。
このような光回路に基づく新しいデバイスは、機械学習アプリケーションにおいて高速でエネルギー効率の高い計算を約束する。
線形光ネットワークの転送行列を再構成する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-01T16:04:22Z) - Large-scale neuromorphic optoelectronic computing with a reconfigurable
diffractive processing unit [38.898230519968116]
回折処理ユニットを構築することにより、光電子再構成可能な計算パラダイムを提案する。
異なるニューラルネットワークを効率的にサポートし、数百万のニューロンで高いモデル複雑性を達成することができる。
市販の光電子部品を用いたプロトタイプシステムは,最先端のグラフィックス処理ユニットの性能を超越している。
論文 参考訳(メタデータ) (2020-08-26T16:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。