論文の概要: Curriculum Learning for Few-Shot Domain Adaptation in CT-based Airway Tree Segmentation
- arxiv url: http://arxiv.org/abs/2411.05779v1
- Date: Fri, 08 Nov 2024 18:46:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:17.327830
- Title: Curriculum Learning for Few-Shot Domain Adaptation in CT-based Airway Tree Segmentation
- Title(参考訳): CTを用いた気道木分割におけるFew-Shot領域適応のカリキュラム学習
- Authors: Maxime Jacovella, Ali Keshavarzi, Elsa Angelini,
- Abstract要約: 我々は,CTスキャンとそれに対応する接地木の特徴から得られた複雑性スコアに基づいて,学習セットをバッチに分散する,気道セグメンテーションネットワークにカリキュラム学習(CL)を統合することを提案する。
2つの大きなオープンコホート(ATM22とAIIB23)にCLをフルトレーニング用(ソースドメイン)と少ショット微調整用(ターゲットドメイン)の2つの性能を報告した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Despite advances with deep learning (DL), automated airway segmentation from chest CT scans continues to face challenges in segmentation quality and generalization across cohorts. To address these, we propose integrating Curriculum Learning (CL) into airway segmentation networks, distributing the training set into batches according to ad-hoc complexity scores derived from CT scans and corresponding ground-truth tree features. We specifically investigate few-shot domain adaptation, targeting scenarios where manual annotation of a full fine-tuning dataset is prohibitively expensive. Results are reported on two large open-cohorts (ATM22 and AIIB23) with high performance using CL for full training (Source domain) and few-shot fine-tuning (Target domain), but with also some insights on potential detrimental effects if using a classic Bootstrapping scoring function or if not using proper scan sequencing.
- Abstract(参考訳): 深層学習(DL)の進歩にもかかわらず、胸部CTスキャンによる自動気道セグメンテーションは、コホート全体のセグメンテーション品質と一般化の課題に直面し続けている。
そこで,本稿では,CTスキャンとそれに対応する接地木の特徴から得られた差分複雑性スコアに基づいて,学習セットをバッチに分散する,気道セグメンテーションネットワークへのカリキュラム学習(CL)の統合を提案する。
具体的には、完全な微調整データセットのマニュアルアノテーションが不当に高価であるシナリオをターゲットとした、少数のドメイン適応について検討する。
2つの大きなオープンコホート(ATM22とAIIB23)において、CLをフルトレーニング(ソースドメイン)に使用し、少数ショットの微調整(ターゲットドメイン)を施し、古典的なブートストラップスコアリング機能を使用したり、適切なスキャンシークエンシングを使用していない場合の潜在的な有害な影響についていくつかの知見を得た。
関連論文リスト
- SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis [8.489318619991534]
深層学習は、精神疾患や個人の特徴に関連する静止状態機能型磁気共鳴イメージング(rsfMRI)のパターンを明らかにするのに役立つ。
しかし、深層学習の発見を解釈する問題は、fMRIによる分析よりも明らかではない。
スパーシフィケーションと自己超越に基づくこれらの課題を緩和するための簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T18:35:57Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Ensemble uncertainty as a criterion for dataset expansion in distinct
bone segmentation from upper-body CT images [0.7388859384645263]
個々の骨の局所化と分節化は多くの計画およびナビゲーションアプリケーションにおいて重要な前処理ステップである。
上半身CTにおいて125個の異なる骨を分割できるエンドツーエンド学習アルゴリズムを提案する。
また、アンサンブルベースの不確実性対策も提供し、スキャンを単一にしてトレーニングデータセットを拡大します。
論文 参考訳(メタデータ) (2022-08-19T08:39:23Z) - ECONet: Efficient Convolutional Online Likelihood Network for
Scribble-based Interactive Segmentation [6.016521285275371]
CT画像における COVID-19 関連肺病変の自動分画には, 大量の注記量が必要である。
我々は,アノテータがスクリブルベースインタラクションを提供する間,オンラインで学習できる効率的な畳み込みニューラルネットワーク(CNN)を提案する。
本研究は,新型コロナウイルス関連肺病変のアノテート,Diceスコアの16%,実行時間3$times$,スクリブルスをベースとしたラベル付きボキセル9000,といった課題において,既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-12T17:21:28Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Context-self contrastive pretraining for crop type semantic segmentation [39.81074867563505]
提案したContext-Self Contrastive Loss (CSCL)は、セマンティックバウンダリをポップアップさせる埋め込み空間を学習する。
衛星画像時系列(SITS)からの作物型セマンティックセマンティックセグメンテーションでは,サテライト境界における性能が重要なボトルネックとなる。
より粒度の高い作物のクラスを得るための超解像における意味的セグメンテーションのプロセスを提案する。
論文 参考訳(メタデータ) (2021-04-09T11:29:44Z) - Quality-aware semi-supervised learning for CMR segmentation [2.9928692313705505]
医用画像セグメンテーションのためのディープラーニングアルゴリズムを開発する上での課題の1つは、トレーニングデータの不足である。
本稿では,下流タスクのQCを用いて,CMRセグメンテーションネットワークの高品質な出力を同定する手法を提案する。
本質的にこれは、セグメンテーションネットワーク用のSSLの変種におけるトレーニングデータの品質向上を提供する。
論文 参考訳(メタデータ) (2020-09-01T17:18:22Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
本稿では,エンド・ツー・エンドの設定において,分類ネットワークと融合可能な効率的なローカライゼーションモジュールを提案する。
我々は,CUB200-2011,Stanford Cars,FGVC-Aircraftの3つのベンチマークデータセット上で,新しいモデルを評価する。
論文 参考訳(メタデータ) (2020-05-11T14:07:06Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic
Segmentation [79.42338812621874]
敵のトレーニングは、敵の摂動に対するディープニューラルネットワークの堅牢性を改善することを約束している。
本研究は, 敵とクリーンの両方のサンプルに対して良好に動作可能な, 汎用的な敵の訓練手順を定式化する。
本稿では,防衛効果を高めるための動的分割対対人訓練(DDC-AT)戦略を提案する。
論文 参考訳(メタデータ) (2020-03-14T05:06:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。