論文の概要: ASL STEM Wiki: Dataset and Benchmark for Interpreting STEM Articles
- arxiv url: http://arxiv.org/abs/2411.05783v1
- Date: Fri, 08 Nov 2024 18:50:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:56:07.633759
- Title: ASL STEM Wiki: Dataset and Benchmark for Interpreting STEM Articles
- Title(参考訳): ASL STEMウィキ:STEM記事を解釈するためのデータセットとベンチマーク
- Authors: Kayo Yin, Chinmay Singh, Fyodor O. Minakov, Vanessa Milan, Hal Daumé III, Cyril Zhang, Alex X. Lu, Danielle Bragg,
- Abstract要約: ASL STEM Wiki: 英語のSTEMトピックに関する254のウィキペディア記事の並列コーパスで、アメリカ手話(ASL)の300時間以上にわたって解釈される。
ASL STEM Wiki のいくつかのユースケースを人間中心のアプリケーションで識別する。
例えば、このデータセットは、技術的概念に対するフィンガースペルの頻繁な使用を強調しているため、フィンガースペルされた単語を識別するモデルを開発します。
- 参考スコア(独自算出の注目度): 30.344715009550374
- License:
- Abstract: Deaf and hard-of-hearing (DHH) students face significant barriers in accessing science, technology, engineering, and mathematics (STEM) education, notably due to the scarcity of STEM resources in signed languages. To help address this, we introduce ASL STEM Wiki: a parallel corpus of 254 Wikipedia articles on STEM topics in English, interpreted into over 300 hours of American Sign Language (ASL). ASL STEM Wiki is the first continuous signing dataset focused on STEM, facilitating the development of AI resources for STEM education in ASL. We identify several use cases of ASL STEM Wiki with human-centered applications. For example, because this dataset highlights the frequent use of fingerspelling for technical concepts, which inhibits DHH students' ability to learn, we develop models to identify fingerspelled words -- which can later be used to query for appropriate ASL signs to suggest to interpreters.
- Abstract(参考訳): 聴覚障害と難聴(DHH)の学生は、特に署名言語におけるSTEMリソースの不足のために、科学、技術、工学、数学(STEM)教育へのアクセスにおいて大きな障壁に直面している。
ASL STEM Wiki: a parallel corpus of 254 Wikipedia articles on STEM topics in English, interpretation into 300 hours of American Sign Language (ASL)。
ASL STEM Wikiは、STEMに焦点を当てた最初の継続的署名データセットであり、ASLにおけるSTEM教育のためのAIリソースの開発を促進する。
ASL STEM Wiki と人間中心のアプリケーションとのいくつかのユースケースを同定する。
例えば、このデータセットは、DHH学生の学習能力を阻害する技術概念に対するフィンガースペルの頻繁な使用を強調しているため、フィンガースペルされた単語を識別するモデルを開発します。
関連論文リスト
- The American Sign Language Knowledge Graph: Infusing ASL Models with Linguistic Knowledge [6.481946043182915]
専門的な言語知識の12つの情報源からコンパイルされたASLKG(American Sign Language Knowledge Graph)を紹介する。
我々は、ASLKGを用いて、3つのASL理解タスクのニューロシンボリックモデルをトレーニングし、ISRで91%のアキュラシーを達成し、14%の未確認のサインのセマンティックな特徴を予測し、36%のYoutube-ASLビデオのトピックを分類した。
論文 参考訳(メタデータ) (2024-11-06T00:16:16Z) - FLEURS-ASL: Including American Sign Language in Massively Multilingual Multitask Evaluation [0.9790236766474201]
FLORES(テキスト用)とFLEURS(音声用)のマルチウェイ並列ベンチマークであるFLEURS-ASLを導入する。
FLEURS-ASLは、ASLと200言語間の様々なタスクをテキストとして、あるいは102言語を音声として評価するために使用することができる。
タイムスタンプトークンと過去のテキストトークンを34秒のコンテキストウィンドウに組み込んだ統一モデリングアプローチを用いて,ASLから英語テキストへのタスクのベースラインを提供する。
また、FLEURS-ASLを用いて、マルチモーダルフロンティアモデルがASLを事実上理解していないことを示す。
論文 参考訳(メタデータ) (2024-08-24T13:59:41Z) - SpeechGLUE: How Well Can Self-Supervised Speech Models Capture Linguistic Knowledge? [45.901645659694935]
音声表現のための自己教師付き学習(SSL)は、様々な下流タスクにうまく適用されている。
本稿では,音声SSL技術が言語知識をうまく捉えることができるかどうかを明らかにすることを目的とする。
論文 参考訳(メタデータ) (2023-06-14T09:04:29Z) - A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends [82.64268080902742]
自己教師付き学習(SSL)は、ラベル付きラベルを頼らずにラベル付きデータから識別的特徴を学習することを目的としている。
SSLは最近大きな注目を集め、多くの関連するアルゴリズムの開発に繋がった。
本稿では,アルゴリズム的側面,アプリケーション領域,3つの重要なトレンド,オープンな研究課題を含む,多様なSSL手法のレビューを行う。
論文 参考訳(メタデータ) (2023-01-13T14:41:05Z) - LSA-T: The first continuous Argentinian Sign Language dataset for Sign
Language Translation [52.87578398308052]
手話翻訳(SLT)は、人間とコンピュータの相互作用、コンピュータビジョン、自然言語処理、機械学習を含む活発な研究分野である。
本稿では,最初の連続的アルゼンチン手話(LSA)データセットを提案する。
このビデオには、CN Sordos YouTubeチャンネルから抽出されたLCAの14,880の文レベルのビデオと、各署名者のためのラベルとキーポイントアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-11-14T14:46:44Z) - ASL-Homework-RGBD Dataset: An annotated dataset of 45 fluent and
non-fluent signers performing American Sign Language homeworks [32.3809065803553]
このデータセットには、American Sign Language (ASL) を使用した、流動的で非流動的なシグナのビデオが含まれている。
受講生は45名、受講生は45名、受講生は45名であった。
データは、文法的特徴や非マニュアルマーカーを含む署名のいくつかの側面を特定するために注釈付けされている。
論文 参考訳(メタデータ) (2022-07-08T17:18:49Z) - Audio Self-supervised Learning: A Survey [60.41768569891083]
SSL(Self-Supervised Learning)は、人間のアノテーションを必要とせずに、大規模データから一般的な表現を見つけることを目的としている。
コンピュータビジョンと自然言語処理の分野での成功により、近年では音声処理や音声処理の分野で採用されている。
論文 参考訳(メタデータ) (2022-03-02T15:58:29Z) - UniSpeech-SAT: Universal Speech Representation Learning with Speaker
Aware Pre-Training [72.004873454347]
教師なし話者情報抽出の2つの手法が導入された。
SUPERBベンチマークによる実験結果から,提案方式は最先端の性能を実現することが示された。
トレーニングデータセットを94万時間公開オーディオデータにスケールアップし、さらなるパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2021-10-12T05:43:30Z) - Recognizing American Sign Language Nonmanual Signal Grammar Errors in
Continuous Videos [38.14850006590712]
本稿では,連続署名ビデオにおける文法的誤りを認識できる準リアルタイムシステムを提案する。
ASL 文のパフォーマンスに ASL の学生による文法的誤りが含まれているかどうかを自動的に認識する。
論文 参考訳(メタデータ) (2020-05-01T07:25:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。