論文の概要: From Pixels to Prose: Advancing Multi-Modal Language Models for Remote Sensing
- arxiv url: http://arxiv.org/abs/2411.05826v1
- Date: Tue, 05 Nov 2024 12:14:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:46.007005
- Title: From Pixels to Prose: Advancing Multi-Modal Language Models for Remote Sensing
- Title(参考訳): PixelsからProseへ:リモートセンシングのためのマルチモーダル言語モデルの改善
- Authors: Xintian Sun, Benji Peng, Charles Zhang, Fei Jin, Qian Niu, Junyu Liu, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Ming Liu, Yichao Zhang,
- Abstract要約: 本稿では,リモートセンシングにおけるマルチモーダル言語モデル(MLLM)の開発と応用について検討する。
我々は、自然言語を用いて衛星画像の解釈と記述を行う能力に焦点をあてる。
シーン記述、オブジェクト検出、変更検出、テキスト・ツー・イメージ検索、画像・ツー・テキスト生成、視覚的質問応答などの重要な応用について論じる。
- 参考スコア(独自算出の注目度): 16.755590790629153
- License:
- Abstract: Remote sensing has evolved from simple image acquisition to complex systems capable of integrating and processing visual and textual data. This review examines the development and application of multi-modal language models (MLLMs) in remote sensing, focusing on their ability to interpret and describe satellite imagery using natural language. We cover the technical underpinnings of MLLMs, including dual-encoder architectures, Transformer models, self-supervised and contrastive learning, and cross-modal integration. The unique challenges of remote sensing data--varying spatial resolutions, spectral richness, and temporal changes--are analyzed for their impact on MLLM performance. Key applications such as scene description, object detection, change detection, text-to-image retrieval, image-to-text generation, and visual question answering are discussed to demonstrate their relevance in environmental monitoring, urban planning, and disaster response. We review significant datasets and resources supporting the training and evaluation of these models. Challenges related to computational demands, scalability, data quality, and domain adaptation are highlighted. We conclude by proposing future research directions and technological advancements to further enhance MLLM utility in remote sensing.
- Abstract(参考訳): リモートセンシングは、単純な画像取得から、視覚的およびテキストデータの統合と処理が可能な複雑なシステムへと進化してきた。
本稿では, 遠隔センシングにおけるマルチモーダル言語モデル(MLLM)の開発と応用について検討し, 自然言語を用いた衛星画像の解釈・記述能力に着目した。
MLLMの技術的基盤には、デュアルエンコーダアーキテクチャ、トランスフォーマーモデル、自己教師付きコントラスト学習、クロスモーダル統合などが含まれる。
リモートセンシングデータの固有の課題 - 空間分解能の変化、スペクトルの豊かさ、時間変化 - は、MLLMの性能に与える影響について分析する。
環境モニタリング,都市計画,災害対応の関連性を示すために,シーン記述,オブジェクト検出,変更検出,テキスト・ツー・イメージ検索,画像・ツー・テキスト生成,視覚的質問応答などの重要な応用について論じる。
これらのモデルのトレーニングと評価を支援する重要なデータセットとリソースについてレビューする。
計算要求、スケーラビリティ、データ品質、ドメイン適応に関する課題が強調されている。
遠隔センシングにおけるMLLMの有用性をさらに高めるため,今後の研究方向と技術進歩を提案する。
関連論文リスト
- On-Device Language Models: A Comprehensive Review [26.759861320845467]
資源制約のあるデバイスに計算コストの高い大規模言語モデルをデプロイする際の課題について検討する。
論文は、デバイス上での言語モデル、その効率的なアーキテクチャ、および最先端の圧縮技術について考察する。
主要モバイルメーカーによるオンデバイス言語モデルのケーススタディは、実世界の応用と潜在的な利益を実証している。
論文 参考訳(メタデータ) (2024-08-26T03:33:36Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
本稿では,大規模なVHRリモートセンシング画像における高密度予測タスクに対するリモートセンシング・マンバ(RSM)を提案する。
RSMは、線形複雑度でリモートセンシング画像のグローバルなコンテキストを捉えるように設計されている。
我々のモデルは、大規模なリモートセンシング画像の変換器ベースモデルよりも効率と精度がよい。
論文 参考訳(メタデータ) (2024-04-03T12:06:01Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - The Potential of Visual ChatGPT For Remote Sensing [0.0]
本稿では、リモートセンシング領域に関連する画像処理の側面に取り組むために、Visual ChatGPTの可能性を考察する。
テキスト入力に基づく画像の処理能力は、様々な分野に革命をもたらす可能性がある。
LLMと視覚モデルの組み合わせは、まだ初期の段階ではあるが、リモートセンシング画像処理を変換する大きな可能性を秘めていると信じている。
論文 参考訳(メタデータ) (2023-04-25T17:29:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。