Input-Driven Dynamics for Robust Memory Retrieval in Hopfield Networks
- URL: http://arxiv.org/abs/2411.05849v1
- Date: Wed, 06 Nov 2024 17:24:25 GMT
- Title: Input-Driven Dynamics for Robust Memory Retrieval in Hopfield Networks
- Authors: Simone Betteti, Giacomo Baggio, Francesco Bullo, Sandro Zampieri,
- Abstract summary: The Hopfield model provides a mathematically idealized yet insightful framework for understanding the mechanisms of memory storage and retrieval in the human brain.
We propose a novel system framework in which the external input directly influences the neural synapses and shapes the energy landscape of the Hopfield model.
This plasticity-based mechanism provides a clear energetic interpretation of the memory retrieval process and proves effective at correctly classifying highly mixed inputs.
- Score: 3.961279440272764
- License:
- Abstract: The Hopfield model provides a mathematically idealized yet insightful framework for understanding the mechanisms of memory storage and retrieval in the human brain. This model has inspired four decades of extensive research on learning and retrieval dynamics, capacity estimates, and sequential transitions among memories. Notably, the role and impact of external inputs has been largely underexplored, from their effects on neural dynamics to how they facilitate effective memory retrieval. To bridge this gap, we propose a novel dynamical system framework in which the external input directly influences the neural synapses and shapes the energy landscape of the Hopfield model. This plasticity-based mechanism provides a clear energetic interpretation of the memory retrieval process and proves effective at correctly classifying highly mixed inputs. Furthermore, we integrate this model within the framework of modern Hopfield architectures, using this connection to elucidate how current and past information are combined during the retrieval process. Finally, we embed both the classic and the new model in an environment disrupted by noise and compare their robustness during memory retrieval.
Related papers
- Modern Hopfield Networks with Continuous-Time Memories [19.616624959353697]
We propose an approach that compresses large discrete Hopfield memories into smaller, continuous-time memories.
Inspired by psychological theories of continuous neural resource allocation in working memory, we propose an approach that compresses large discrete Hopfield memories into smaller, continuous-time memories.
arXiv Detail & Related papers (2025-02-14T12:41:05Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - A Waddington landscape for prototype learning in generalized Hopfield
networks [0.0]
We study the learning dynamics of Generalized Hopfield networks.
We observe a strong resemblance to the canalized, or low-dimensional, dynamics of cells as they differentiate.
arXiv Detail & Related papers (2023-12-04T21:28:14Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - In search of dispersed memories: Generative diffusion models are
associative memory networks [6.4322891559626125]
Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks.
We show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is identical to that of modern Hopfield networks.
This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network.
arXiv Detail & Related papers (2023-09-29T14:48:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Canonical Cortical Graph Neural Networks and its Application for Speech
Enhancement in Future Audio-Visual Hearing Aids [0.726437825413781]
This paper proposes a more biologically plausible self-supervised machine learning approach that combines multimodal information using intra-layer modulations together with canonical correlation analysis (CCA)
The approach outperformed recent state-of-the-art results considering both better clean audio reconstruction and energy efficiency, described by a reduced and smother neuron firing rate distribution.
arXiv Detail & Related papers (2022-06-06T15:20:07Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Slow manifolds in recurrent networks encode working memory efficiently
and robustly [0.0]
Working memory is a cognitive function involving the storage and manipulation of latent information over brief intervals of time.
We use a top-down modeling approach to examine network-level mechanisms of working memory.
arXiv Detail & Related papers (2021-01-08T18:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.