Meta-Dynamical State Space Models for Integrative Neural Data Analysis
- URL: http://arxiv.org/abs/2410.05454v1
- Date: Mon, 7 Oct 2024 19:35:49 GMT
- Title: Meta-Dynamical State Space Models for Integrative Neural Data Analysis
- Authors: Ayesha Vermani, Josue Nassar, Hyungju Jeon, Matthew Dowling, Il Memming Park,
- Abstract summary: Learning shared structure across environments facilitates rapid learning and adaptive behavior in neural systems.
There has been limited work exploiting the shared structure in neural activity during similar tasks for learning latent dynamics from neural recordings.
We propose a novel approach for meta-learning this solution space from task-related neural activity of trained animals.
- Score: 8.625491800829224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning shared structure across environments facilitates rapid learning and adaptive behavior in neural systems. This has been widely demonstrated and applied in machine learning to train models that are capable of generalizing to novel settings. However, there has been limited work exploiting the shared structure in neural activity during similar tasks for learning latent dynamics from neural recordings. Existing approaches are designed to infer dynamics from a single dataset and cannot be readily adapted to account for statistical heterogeneities across recordings. In this work, we hypothesize that similar tasks admit a corresponding family of related solutions and propose a novel approach for meta-learning this solution space from task-related neural activity of trained animals. Specifically, we capture the variabilities across recordings on a low-dimensional manifold which concisely parametrizes this family of dynamics, thereby facilitating rapid learning of latent dynamics given new recordings. We demonstrate the efficacy of our approach on few-shot reconstruction and forecasting of synthetic dynamical systems, and neural recordings from the motor cortex during different arm reaching tasks.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Allostatic Control of Persistent States in Spiking Neural Networks for perception and computation [79.16635054977068]
We introduce a novel model for updating perceptual beliefs about the environment by extending the concept of Allostasis to the control of internal representations.
In this paper, we focus on an application in numerical cognition, where a bump of activity in an attractor network is used as a spatial numerical representation.
arXiv Detail & Related papers (2025-03-20T12:28:08Z) - Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations [1.5467259918426441]
We propose a framework for developing computational models of biological neural systems.
We employ a system of coupled differential equations with differentiable drift and diffusion functions.
We show that these hybrid models achieve competitive performance in predicting stimulus-evoked neural and behavioral responses.
arXiv Detail & Related papers (2024-12-01T09:36:03Z) - Graph-Based Representation Learning of Neuronal Dynamics and Behavior [2.3859858429583665]
We introduce the Temporal Attention-enhanced Variational Graph Recurrent Neural Network (TAVRNN), a novel framework that models time-varying neuronal connectivity.<n>TAVRNN learns latent dynamics at the single-unit level while maintaining interpretable population-level representations.<n>We validate TAVRNN on three diverse datasets: (1) electrophysiological data from a freely behaving rat, (2) primate somatosensory cortex recordings during a reaching task, and (3) biological neurons in the DishBrain platform interacting with a virtual game environment.
arXiv Detail & Related papers (2024-10-01T13:19:51Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - A Unified, Scalable Framework for Neural Population Decoding [12.052847252465826]
We introduce a training framework and architecture designed to model the population dynamics of neural activity.
We construct a large-scale multi-session model trained on large datasets from seven nonhuman primates.
arXiv Detail & Related papers (2023-10-24T17:58:26Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Learning low-dimensional dynamics from whole-brain data improves task
capture [2.82277518679026]
We introduce a novel approach to learning low-dimensional approximations of neural dynamics by using a sequential variational autoencoder (SVAE)
Our method finds smooth dynamics that can predict cognitive processes with accuracy higher than classical methods.
We evaluate our approach on various task-fMRI datasets, including motor, working memory, and relational processing tasks.
arXiv Detail & Related papers (2023-05-18T18:43:13Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
We introduce a representation learning method, MARBLE, that decomposes on-manifold dynamics into local flow fields and maps them into a common latent space.
In simulated non-linear dynamical systems, recurrent neural networks, and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations.
These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations.
arXiv Detail & Related papers (2023-04-06T21:11:04Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.