Predictive Digital Twin for Condition Monitoring Using Thermal Imaging
- URL: http://arxiv.org/abs/2411.05887v1
- Date: Fri, 08 Nov 2024 11:23:57 GMT
- Title: Predictive Digital Twin for Condition Monitoring Using Thermal Imaging
- Authors: Daniel Menges, Florian Stadtmann, Henrik Jordheim, Adil Rasheed,
- Abstract summary: This paper explores the development and practical application of a predictive digital twin specifically designed for condition monitoring.
We employ advanced mathematical models and thermal imaging techniques to establish a robust digital twin framework.
We introduce the use of a human-machine interface that includes virtual reality, enhancing user interaction and system understanding.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the development and practical application of a predictive digital twin specifically designed for condition monitoring, using advanced mathematical models and thermal imaging techniques. Our work presents a comprehensive approach to integrating Proper Orthogonal Decomposition (POD), Robust Principal Component Analysis (RPCA), and Dynamic Mode Decomposition (DMD) to establish a robust predictive digital twin framework. We employ these methods in a real-time experimental setup involving a heated plate monitored through thermal imaging. This system effectively demonstrates the digital twin's capabilities in real-time predictions, condition monitoring, and anomaly detection. Additionally, we introduce the use of a human-machine interface that includes virtual reality, enhancing user interaction and system understanding. The primary contributions of our research lie in the demonstration of these advanced techniques in a tangible setup, showcasing the potential of digital twins to transform industry practices by enabling more proactive and strategic asset management.
Related papers
- Deep learning-based Visual Measurement Extraction within an Adaptive Digital Twin Framework from Limited Data Using Transfer Learning [0.0]
Digital Twins technology is revolutionizing decision-making in scientific research by integrating models and simulations with real-time data.
This research proposes a novel approach using Artificial Intelligence.
Convolutional Neural Networks are employed to analyze structural behaviors in real-time by correlating Digital Image Correlation speckle pattern images with deformation fields.
arXiv Detail & Related papers (2024-10-07T18:10:12Z) - A Digital Twin Framework for Liquid-cooled Supercomputers as Demonstrated at Exascale [0.6465720702999465]
We present ExaDigiT, an open-source framework for developing comprehensive digital twins of liquid-cooled supercomputers.
It integrates three main modules: (1) a resource allocator and power simulator, (2) a transient thermo-fluidic cooling model, and (3) an augmented reality model of the supercomputer and central energy plant.
We envision the digital twin will be a key enabler for sustainable, energy-efficient supercomputing.
arXiv Detail & Related papers (2024-10-07T15:36:50Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
There is no consensual definition of what a digital twin is.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of embedded software systems.
arXiv Detail & Related papers (2024-01-15T22:13:48Z) - Stochastic Digital Twin for Copy Detection Patterns [6.5247605335587915]
Copy detection patterns (CDP) present an efficient technique for product protection against counterfeiting.
Recent advancements in computer modelling, notably the concept of a "digital twin" for printing-imaging channels, allow for enhanced scalability.
This paper extends previous research which modelled a printing-imaging channel using a machine learning-based digital twin for CDP.
arXiv Detail & Related papers (2023-09-28T21:38:21Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
We present an approach to recognize symbols and connections of P&ID from buildings in a completely automated way.
We apply algorithms for symbol recognition, line recognition and derivation of connections to the data sets.
The approach can be used in further processes like control generation, (distributed) model predictive control or fault detection.
arXiv Detail & Related papers (2021-08-31T15:09:39Z) - A Probabilistic Graphical Model Foundation for Enabling Predictive
Digital Twins at Scale [0.0]
We create an abstraction of the asset-twin system as a set of coupled dynamical systems.
We demonstrate how the model is instantiated to enable a structural digital twin of an unmanned aerial vehicle.
arXiv Detail & Related papers (2020-12-10T17:33:59Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin.
The major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics.
arXiv Detail & Related papers (2020-11-02T19:08:49Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Man, machine and work in a digital twin setup: a case study [77.34726150561087]
A digital twin as a virtual counterpart of a physical human-robot assembly system is built as a front-runner for validation and control through design, build, and operation.
The forms of digital twins along the system life cycle, the building blocks, and potential advantages are presented.
arXiv Detail & Related papers (2020-06-15T20:54:43Z) - The role of surrogate models in the development of digital twins of
dynamic systems [0.0]
Digital twin technology has significant promise, relevance and potential of widespread applicability.
Digital twins are expected to exploit data and computational methods.
We have explored the possibility of using surrogate models within the digital twin technology.
arXiv Detail & Related papers (2020-01-25T10:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.