Deep learning-based Visual Measurement Extraction within an Adaptive Digital Twin Framework from Limited Data Using Transfer Learning
- URL: http://arxiv.org/abs/2410.05403v1
- Date: Mon, 7 Oct 2024 18:10:12 GMT
- Title: Deep learning-based Visual Measurement Extraction within an Adaptive Digital Twin Framework from Limited Data Using Transfer Learning
- Authors: Mehrdad Shafiei Dizaji,
- Abstract summary: Digital Twins technology is revolutionizing decision-making in scientific research by integrating models and simulations with real-time data.
This research proposes a novel approach using Artificial Intelligence.
Convolutional Neural Networks are employed to analyze structural behaviors in real-time by correlating Digital Image Correlation speckle pattern images with deformation fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital Twins technology is revolutionizing decision-making in scientific research by integrating models and simulations with real-time data. Unlike traditional Structural Health Monitoring methods, which rely on computationally intensive Digital Image Correlation and have limitations in real-time data integration, this research proposes a novel approach using Artificial Intelligence. Specifically, Convolutional Neural Networks are employed to analyze structural behaviors in real-time by correlating Digital Image Correlation speckle pattern images with deformation fields. Initially focusing on two-dimensional speckle patterns, the research extends to three-dimensional applications using stereo-paired images for comprehensive deformation analysis. This method overcomes computational challenges by utilizing a mix of synthetically generated and authentic speckle pattern images for training the Convolutional Neural Networks. The models are designed to be robust and versatile, offering a promising alternative to traditional measurement techniques and paving the way for advanced applications in three-dimensional modeling. This advancement signifies a shift towards more efficient and dynamic structural health monitoring by leveraging the power of Artificial Intelligence for real-time simulation and analysis.
Related papers
- Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models [14.867842273942188]
We propose an unsupervised training technique that enables the model to extract comprehensive features from the Fourier spectrum magnitude.
We develop a comprehensive database that includes images generated by diverse neural rendering techniques, providing a robust foundation for evaluating and advancing detection methods.
arXiv Detail & Related papers (2024-11-13T14:32:28Z) - Single-shot Tomography of Discrete Dynamic Objects [1.1407697960152927]
We present a novel method for the reconstruction of high-resolution temporal images in dynamic tomographic imaging.
The implications of this research extend to improved visualization and analysis of dynamic processes in tomographic imaging.
arXiv Detail & Related papers (2023-11-09T10:52:02Z) - Using convolutional neural networks for stereological characterization
of 3D hetero-aggregates based on synthetic STEM data [0.0]
A parametric 3D model is presented, from which a wide spectrum of virtual hetero-aggregates can be generated.
The virtual structures are passed to a physics-based simulation tool in order to generate virtual scanning transmission electron microscopy (STEM) images.
Convolutional neural networks are trained to predict 3D structures of hetero-aggregates from 2D STEM images.
arXiv Detail & Related papers (2023-10-27T22:49:08Z) - Neural Textured Deformable Meshes for Robust Analysis-by-Synthesis [17.920305227880245]
Our paper formulates triple vision tasks in a consistent manner using approximate analysis-by-synthesis.
We show that our analysis-by-synthesis is much more robust than conventional neural networks when evaluated on real-world images.
arXiv Detail & Related papers (2023-05-31T18:45:02Z) - Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning [0.0]
A digital twin is a surrogate model that has the main feature to mirror the original process behavior.
This paper introduces a new framework for creating efficient digital twin models of fluid flows.
We involve the state-of-the-art artificial intelligence Deep Learning (DL) to perform a real-time adaptive calibration of the digital twin model.
arXiv Detail & Related papers (2022-06-17T09:45:04Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.