Sdn Intrusion Detection Using Machine Learning Method
- URL: http://arxiv.org/abs/2411.05888v1
- Date: Fri, 08 Nov 2024 12:19:50 GMT
- Title: Sdn Intrusion Detection Using Machine Learning Method
- Authors: Muhammad Zawad Mahmud, Shahran Rahman Alve, Samiha Islam, Mohammad Monirujjaman Khan,
- Abstract summary: Software-defined network (SDN) is a new approach that allows network control to become directly programmable.
This research developed a novel machine-learning method to capture infections in networks.
- Score: 0.0
- License:
- Abstract: Software-defined network (SDN) is a new approach that allows network control to become directly programmable, and the underlying infrastructure can be abstracted from applications and network services. Control plane). When it comes to security, the centralization that this demands is ripe for a variety of cyber threats that are not typically seen in other network architectures. The authors in this research developed a novel machine-learning method to capture infections in networks. We applied the classifier to the UNSW-NB 15 intrusion detection benchmark and trained a model with this data. Random Forest and Decision Tree are classifiers used to assess with Gradient Boosting and AdaBoost. Out of these best-performing models was Gradient Boosting with an accuracy, recall, and F1 score of 99.87%,100%, and 99.85%, respectively, which makes it reliable in the detection of intrusions for SDN networks. The second best-performing classifier was also a Random Forest with 99.38% of accuracy, followed by Ada Boost and Decision Tree. The research shows that the reason that Gradient Boosting is so effective in this task is that it combines weak learners and creates a strong ensemble model that can predict if traffic belongs to a normal or malicious one with high accuracy. This paper indicates that the GBDT-IDS model is able to improve network security significantly and has better features in terms of both real-time detection accuracy and low false positive rates. In future work, we will integrate this model into live SDN space to observe its application and scalability. This research serves as an initial base on which one can make further strides forward to enhance security in SDN using ML techniques and have more secure, resilient networks.
Related papers
- Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - C-RADAR: A Centralized Deep Learning System for Intrusion Detection in Software Defined Networks [0.0]
We propose the use of deep learning (DL) techniques for intrusion detection in Software Defined Networks (SDNs)
Our results show that the DL-based approach outperforms traditional methods in terms of detection accuracy and computational efficiency.
This technique can be trained to detect new attack patterns and improve the overall security of SDNs.
arXiv Detail & Related papers (2024-08-30T15:39:37Z) - Detection of DDoS Attacks in Software Defined Networking Using Machine
Learning Models [0.6193838300896449]
This paper investigates the effectiveness of machine learning algorithms to detect distributed denial-of-service (DDoS) attacks in software-defined networking (SDN) environments.
The results indicate that ML-based detection is a more accurate and effective method for identifying DDoS attacks in SDN.
arXiv Detail & Related papers (2023-03-11T22:56:36Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - An Isolation Forest Learning Based Outlier Detection Approach for
Effectively Classifying Cyber Anomalies [2.2628381865476115]
We present an Isolation Forest Learning-Based Outlier Detection Model for effectively classifying cyber anomalies.
Experimental results show that the classification accuracy of cyber anomalies has been improved after removing outliers.
arXiv Detail & Related papers (2020-12-09T05:09:52Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.