論文の概要: The effect of different feature selection methods on models created with XGBoost
- arxiv url: http://arxiv.org/abs/2411.05937v1
- Date: Fri, 08 Nov 2024 19:52:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:30.583404
- Title: The effect of different feature selection methods on models created with XGBoost
- Title(参考訳): XGBoostを用いたモデルにおける異なる特徴選択法の効果
- Authors: Jorge Neyra, Vishal B. Siramshetty, Huthaifa I. Ashqar,
- Abstract要約: 本研究では,XGBoostで作成したモデルに対して,異なる特徴選択法が与える影響について検討する。
特徴の次元性を減少させる3つの異なる方法が、モデルの予測精度に統計的に有意な変化を起こさないことを示す。
- 参考スコア(独自算出の注目度): 1.2166468091046596
- License:
- Abstract: This study examines the effect that different feature selection methods have on models created with XGBoost, a popular machine learning algorithm with superb regularization methods. It shows that three different ways for reducing the dimensionality of features produces no statistically significant change in the prediction accuracy of the model. This suggests that the traditional idea of removing the noisy training data to make sure models do not overfit may not apply to XGBoost. But it may still be viable in order to reduce computational complexity.
- Abstract(参考訳): 本研究では,超正規化手法を用いた機械学習アルゴリズムであるXGBoostで作成したモデルに対して,異なる特徴選択法が与える影響について検討する。
特徴の次元性を減少させる3つの異なる方法が、モデルの予測精度に統計的に有意な変化を起こさないことを示す。
これは、モデルが過度に適合しないことを保証するため、ノイズの多いトレーニングデータを削除するという従来の考え方がXGBoostに当てはまらないことを示唆している。
しかし、計算の複雑さを減らすために、まだ実現可能かもしれない。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Mean estimation in the add-remove model of differential privacy [20.78625240235862]
加算除去モデルに基づく一次元平均推定問題について検討する。
提案アルゴリズムは,実際に頻繁に使用されるアルゴリズムよりも,平均2乗誤差が2倍に向上することを示す。
論文 参考訳(メタデータ) (2023-12-11T18:59:35Z) - Quantile Extreme Gradient Boosting for Uncertainty Quantification [1.7685947618629572]
Extreme Gradient Boosting (XGBoost)は、最も人気のある機械学習(ML)手法の1つである。
本稿では,不確実性(QXGBoost)を推定する目的関数として,修正量子回帰を用いたXGBoostの拡張を提案する。
提案手法は, 正規および量子的光勾配向上のために生成した不確実性推定値と同等あるいは優れた性能を示した。
論文 参考訳(メタデータ) (2023-04-23T19:46:19Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Adaptive Machine Unlearning [21.294828533009838]
SISフレキシブルリトレーニングは、完全にトレーニングされたモデルよりも安価な計算リトレーニングで、モデルから削除されたデータポイントを削除することを目的としている。
我々は、事前の作業が非適応的削除シーケンスの保証をいかに与え、非常に強力なアルゴリズムに対して強力な証明可能な削除保証を与えるかを示す。
論文 参考訳(メタデータ) (2021-06-08T14:11:53Z) - Gaussian Process Boosting [13.162429430481982]
ガウス過程と混合効果モデルを組み合わせた新しい手法を提案する。
シミュレーションおよび実世界のデータセットに対する既存手法と比較して予測精度が向上する。
論文 参考訳(メタデータ) (2020-04-06T13:19:54Z) - Learning the Stein Discrepancy for Training and Evaluating Energy-Based
Models without Sampling [30.406623987492726]
非正規化密度モデルの評価と訓練のための新しい手法を提案する。
データ密度$p(x)$とデータのベクトル関数で定義されるモデル密度$q(x)$とのスタイン差を推定する。
これは、既存の手法を高次元データで上回る、新しい適合性テストをもたらす。
論文 参考訳(メタデータ) (2020-02-13T16:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。