Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation
- URL: http://arxiv.org/abs/2411.05966v1
- Date: Fri, 08 Nov 2024 20:52:06 GMT
- Title: Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation
- Authors: Aayush Shah, Shankar Jayaratnam,
- Abstract summary: We introduce two small protein language models, capable of both uncontrollable and controllable protein generation.
For the uncontrollable generation task, our best model achieves an average pLDDT score of 69.75, demonstrating robust performance in generating viable protein structures.
We also demonstrate the deployment of our models on the energy efficient ET-SoC-1 chip, significantly improving the TPS/W by a factor of 3.
- Score: 1.041213135652454
- License:
- Abstract: Large language models (LLMs) have demonstrated significant success in natural language processing (NLP) tasks and have shown promising results in other domains such as protein sequence generation. However, there remain salient differences between LLMs used for NLP, which effectively handle multiple tasks and are available in small sizes, and protein language models that are often specialized for specific tasks and only exist in larger sizes. In this work, we introduce two small protein language models, based on Llama-3-8B and Phi-3-mini, that are capable of both uncontrollable and controllable protein generation. For the uncontrollable generation task, our best model achieves an average pLDDT score of 69.75, demonstrating robust performance in generating viable protein structures. For the controllable generation task, in which the model generates proteins according to properties specified in the prompt, we achieve a remarkable average TM-Score of 0.84, indicating high structural similarity to target proteins. We chose 10 properties, including six classes of enzymes, to extend the capabilities of prior protein language models. Our approach utilizes the Low-Rank Adaptor (LoRA) technique, reducing trainable parameters to just 4% of the original model size, lowering computational requirements. By using a subset of the UniRef50 dataset and small models, we reduced the overall training time by 70% without compromising performance. Notably, Phi-3-mini reduced trainable parameters by 60%, decreasing training cost by 30% compared to Llama 3. Consequently, Phi-3 achieved a comparable TM-Score of 0.81, demonstrating that smaller models can match the performance of larger ones, like Llama 3. We also demonstrate the deployment of our models on the energy efficient ET-SoC-1 chip, significantly improving the TPS/W by a factor of 3.
Related papers
- Training Compute-Optimal Protein Language Models [48.79416103951816]
Most protein language models are trained with extensive compute resources until performance gains plateau.
Our investigation is grounded in a massive dataset consisting of 939 million protein sequences.
We trained over 300 models ranging from 3.5 million to 10.7 billion parameters on 5 to 200 billion unique tokens.
arXiv Detail & Related papers (2024-11-04T14:58:37Z) - Design Proteins Using Large Language Models: Enhancements and Comparative Analyses [12.140433802768733]
We adopt a suite of pre-trained LLMs, including Mistral-7B1, Llama-2-7B2, Llama-3-8B3, and gemma-7B4, to produce valid protein sequences.
We retrain these models to process protein-related data, ensuring the generation of biologically feasible protein structures.
Our findings demonstrate that even with limited data, the adapted models exhibit efficiency comparable to established protein-focused models.
arXiv Detail & Related papers (2024-08-12T08:17:27Z) - Are Protein Language Models Compute Optimal? [0.0]
We investigate the optimal ratio between model parameters and training tokens within a fixed compute budget.
Our study reveals that pLM sizes scale sublinearly with compute budget, showing diminishing returns in performance as model size increases.
This work paves the way towards more compute-efficient pLMs, democratizing their training and practical application in computational biology.
arXiv Detail & Related papers (2024-06-11T13:32:11Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering
the Language of Protein [76.18058946124111]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.
xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.
It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - PETA: Evaluating the Impact of Protein Transfer Learning with Sub-word
Tokenization on Downstream Applications [9.782175445247127]
PETA trained language models with 14 different vocabulary sizes under three tokenization methods.
It conducted thousands of tests on 33 diverse downstream datasets to assess the models' transfer learning capabilities.
Experiments indicate that vocabulary sizes between 50 and 200 optimize the model, whereas sizes exceeding 800 detrimentally affect the model's representational performance.
arXiv Detail & Related papers (2023-10-26T14:20:44Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
We propose Representation Learning via Dictionary Learning (R2DL), an end-to-end representation learning framework.
R2DL reprograms a pretrained English language model to learn the embeddings of protein sequences.
Our model can attain better accuracy and significantly improve the data efficiency by up to $105$ times over the baselines set by pretrained and standard supervised methods.
arXiv Detail & Related papers (2023-01-05T15:55:18Z) - Exploring the Limits of Domain-Adaptive Training for Detoxifying
Large-Scale Language Models [84.30718841659531]
We explore domain-adaptive training to reduce the toxicity of language models.
For the training corpus, we propose to leverage the generative power of LMs.
We then comprehensively study LMs with parameter sizes ranging from 126M up to 530B, a scale that has never been studied before.
arXiv Detail & Related papers (2022-02-08T22:10:40Z) - GLaM: Efficient Scaling of Language Models with Mixture-of-Experts [84.33607245023049]
We propose and develop a family of language models named GLaM (Generalist Language Model)
GLaM uses a sparsely activated mixture-of-experts architecture to scale the model capacity while also incurring substantially less training cost compared to dense variants.
It consumes only 1/3 of the energy used to train GPT-3 and requires half of the flops for inference, while still achieving better overall zero-shot and one-shot performance across 29 NLP tasks.
arXiv Detail & Related papers (2021-12-13T18:58:19Z) - DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with
Gradient-Disentangled Embedding Sharing [117.41016786835452]
This paper presents a new pre-trained language model, DeBERTaV3, which improves the original DeBERTa model.
vanilla embedding sharing in ELECTRA hurts training efficiency and model performance.
We propose a new gradient-disentangled embedding sharing method that avoids the tug-of-war dynamics.
arXiv Detail & Related papers (2021-11-18T06:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.