Are Protein Language Models Compute Optimal?
- URL: http://arxiv.org/abs/2406.07249v2
- Date: Wed, 26 Jun 2024 05:07:15 GMT
- Title: Are Protein Language Models Compute Optimal?
- Authors: Yaiza Serrano, Álvaro Ciudad, Alexis Molina,
- Abstract summary: We investigate the optimal ratio between model parameters and training tokens within a fixed compute budget.
Our study reveals that pLM sizes scale sublinearly with compute budget, showing diminishing returns in performance as model size increases.
This work paves the way towards more compute-efficient pLMs, democratizing their training and practical application in computational biology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While protein language models (pLMs) have transformed biological research, the scaling laws governing their improvement remain underexplored. By adapting methodologies from NLP scaling laws, we investigated the optimal ratio between model parameters and training tokens within a fixed compute budget. Our study reveals that pLM sizes scale sublinearly with compute budget, showing diminishing returns in performance as model size increases, and we identify a performance plateau in training loss comparable to the one found in relevant works in the field. Our findings suggest that widely-used pLMs might not be compute-optimal, indicating that larger models could achieve convergence more efficiently. Training a 35M model on a reduced token set, we attained perplexity results comparable to larger models like ESM-2 (15B) and xTrimoPGLM (100B) with a single dataset pass. This work paves the way towards more compute-efficient pLMs, democratizing their training and practical application in computational biology.
Related papers
- Training Compute-Optimal Protein Language Models [48.79416103951816]
Most protein language models are trained with extensive compute resources until performance gains plateau.
Our investigation is grounded in a massive dataset consisting of 939 million protein sequences.
We trained over 300 models ranging from 3.5 million to 10.7 billion parameters on 5 to 200 billion unique tokens.
arXiv Detail & Related papers (2024-11-04T14:58:37Z) - Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models [46.959380978972206]
We study inference scaling laws and compute-optimal inference for large language models (LLMs) training.
As a first step towards understanding and designing compute-optimal inference methods, we studied cost-performance trade-offs for inference strategies.
Our findings indicate smaller models (e.g., Llemma-7B) can outperform larger models given the same computation budgets.
arXiv Detail & Related papers (2024-08-01T17:16:04Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
We study the behavior of Large Language Models (LLMs) during continual pre-training.
We propose three effective strategies to enhance LLM performance within a fixed compute budget.
Our strategies improve the average medical task performance of the OpenLlama-3B model from 36.2% to 40.7% with only 40% of the original training budget.
arXiv Detail & Related papers (2024-06-21T02:28:37Z) - The Role of Model Architecture and Scale in Predicting Molecular Properties: Insights from Fine-Tuning RoBERTa, BART, and LLaMA [0.0]
This study introduces a systematic framework to compare the efficacy of Large Language Models (LLMs) for fine-tuning across various cheminformatics tasks.
We assessed three well-known models-RoBERTa, BART, and LLaMA-on their ability to predict molecular properties.
We found that LLaMA-based models generally offered the lowest validation loss, suggesting their superior adaptability across tasks and scales.
arXiv Detail & Related papers (2024-05-02T02:20:12Z) - Scaling Laws for Fine-Grained Mixture of Experts [4.412803924115907]
Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models.
In this work, we analyze their scaling properties, incorporating an expanded range of variables.
We establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity.
arXiv Detail & Related papers (2024-02-12T18:33:47Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Distilling Step-by-Step! Outperforming Larger Language Models with Less
Training Data and Smaller Model Sizes [91.58845026796149]
We introduce Distilling step-by-step, a new mechanism that trains small models that outperform large language models.
We present three findings across 4 NLP benchmarks.
arXiv Detail & Related papers (2023-05-03T17:50:56Z) - CPM-2: Large-scale Cost-effective Pre-trained Language Models [71.59893315671997]
We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference.
We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch.
We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources.
arXiv Detail & Related papers (2021-06-20T15:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.