論文の概要: The Empirical Impact of Data Sanitization on Language Models
- arxiv url: http://arxiv.org/abs/2411.05978v1
- Date: Fri, 08 Nov 2024 21:22:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:26.068171
- Title: The Empirical Impact of Data Sanitization on Language Models
- Title(参考訳): データ・サニタイズが言語モデルに及ぼす影響
- Authors: Anwesan Pal, Radhika Bhargava, Kyle Hinsz, Jacques Esterhuizen, Sudipta Bhattacharya,
- Abstract要約: 本稿では,複数のベンチマーク言語モデリングタスクにおけるデータ・サニタイズの効果を実証的に分析する。
以上の結果から,感情分析やエンテーメントなどのタスクでは,リアクションの影響は極めて低く,典型的には1~5%程度であることが示唆された。
理解的なQ&Aのようなタスクでは、オリジナルのものと比較して、再実行クエリで観測されるパフォーマンスの25%が大幅に低下している。
- 参考スコア(独自算出の注目度): 1.1359551336076306
- License:
- Abstract: Data sanitization in the context of language modeling involves identifying sensitive content, such as personally identifiable information (PII), and redacting them from a dataset corpus. It is a common practice used in natural language processing (NLP) to maintain privacy. Nevertheless, the impact of data sanitization on the language understanding capability of a language model remains less studied. This paper empirically analyzes the effects of data sanitization across several benchmark language-modeling tasks including comprehension question answering (Q&A), entailment, sentiment analysis, and text classification. Our experiments cover a wide spectrum comprising finetuning small-scale language models, to prompting large language models (LLMs), on both original and sanitized datasets, and comparing their performance across the tasks. Interestingly, our results suggest that for some tasks such as sentiment analysis or entailment, the impact of redaction is quite low, typically around 1-5%, while for tasks such as comprehension Q&A there is a big drop of >25% in performance observed in redacted queries as compared to the original. For tasks that have a higher impact, we perform a deeper dive to inspect the presence of task-critical entities. Finally, we investigate correlation between performance and number of redacted entities, and also suggest a strategy to repair an already redacted dataset by means of content-based subsampling. Additional details are available at https://sites.google.com/view/datasan.
- Abstract(参考訳): 言語モデリングの文脈におけるデータのサニタイズには、個人識別可能な情報(PII)のようなセンシティブなコンテンツを識別し、データセットコーパスからそれらを再実行することが含まれる。
自然言語処理(NLP)において、プライバシーを維持するためによく使われるプラクティスである。
それでも、言語モデルの言語理解能力に対するデータ衛生の影響は依然として研究されていない。
本稿では,包括的質問応答(Q&A),包括的質問応答,感情分析,テキスト分類など,複数のベンチマーク言語モデルタスクにおけるデータ衛生効果を実証的に分析する。
実験では,小型言語モデルの微調整,大規模言語モデル(LLM)の促進,オリジナルデータセットと衛生データセットの併用,タスク間の性能比較など,幅広い範囲をカバーしている。
興味深いことに、感情分析やエンテーメントなどのタスクでは、リアクションの影響は1~5%程度と非常に低いが、理解Q&Aのようなタスクでは、オリジナルのクエリと比較して、パフォーマンスが25%以上低下していることが示唆されている。
高いインパクトを持つタスクに対しては、タスククリティカルなエンティティの存在を検査するために、より深く掘り下げる。
また,コンテンツベースサブサンプリングを用いて,すでに修正済みのデータセットを修復する戦略を提案する。
詳細はhttps://sites.google.com/view/datasan.comで確認できる。
関連論文リスト
- SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
我々は、言語感覚とオピニオン理解(SOUL)と呼ばれる新しいタスクを提案する。
SOULは2つのサブタスクを通して感情理解を評価することを目的としている:レビュー(RC)と正当化生成(JG)。
論文 参考訳(メタデータ) (2023-10-27T06:48:48Z) - Making Retrieval-Augmented Language Models Robust to Irrelevant Context [55.564789967211844]
ALMの重要なデシプラタムは、検索された情報が関連する場合のパフォーマンスをモデル化するのに役立つことである。
近年の研究では、検索の増大がパフォーマンスに悪影響を及ぼすことが示されている。
論文 参考訳(メタデータ) (2023-10-02T18:52:35Z) - Does Manipulating Tokenization Aid Cross-Lingual Transfer? A Study on
POS Tagging for Non-Standardized Languages [18.210880703295253]
3つの異なる家系の7つの言語で事前訓練された言語モデル(PLM)を精査する。
我々は,そのゼロショット性能を,近縁な非標準多様体で解析する。
全体として、ソース内のサブワードに分割される単語の割合とターゲットデータとの類似性が、ターゲットデータ上でのモデル性能の予測に最強であることが判明した。
論文 参考訳(メタデータ) (2023-04-20T08:32:34Z) - Cross-lingual Argument Mining in the Medical Domain [6.0158981171030685]
注釈付きデータがない医療用テキストでArgument Mining(AM)を実行する方法を示す。
我々の研究は、アノテーション(データ転送)を英語から特定のターゲット言語に自動翻訳・投影することは、注釈付きデータを生成する効果的な方法であることを示している。
また、スペイン語で自動生成されたデータを用いて、元の英語単言語設定の結果を改善する方法も示す。
論文 参考訳(メタデータ) (2023-01-25T11:21:12Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - How Does Data Corruption Affect Natural Language Understanding Models? A
Study on GLUE datasets [4.645287693363387]
モデルが微調整されたり、破損したデータでテストされた場合、ほとんどのGLUEタスクのパフォーマンスは高いままである。
提案したデータ変換は,特定のデータセットがモデルの言語理解能力を評価するための適切なテストベッドを構成する範囲を評価するための診断ツールとして利用することができる。
論文 参考訳(メタデータ) (2022-01-12T13:35:53Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
言語カバレッジバイアスは、ニューラルネットワーク翻訳(NMT)において重要である。
実験を慎重に設計することにより、トレーニングデータにおける言語カバレッジバイアスの包括的分析を行う。
本稿では,言語カバレッジバイアス問題を軽減するための,シンプルで効果的な2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T01:55:34Z) - Competency Problems: On Finding and Removing Artifacts in Language Data [50.09608320112584]
複雑な言語理解タスクでは、すべての単純な特徴相関が突発的であると論じる。
人間バイアスを考慮したコンピテンシー問題に対するデータ作成の難しさを理論的に分析します。
論文 参考訳(メタデータ) (2021-04-17T21:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。