Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
- URL: http://arxiv.org/abs/2411.05979v1
- Date: Fri, 08 Nov 2024 21:24:14 GMT
- Title: Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
- Authors: Ha Manh Bui, Enrique Mallada, Anqi Liu,
- Abstract summary: A neural upper confidence bound (UCB) algorithm has shown success in contextual bandits.
We propose a variance-aware algorithm that utilizes $sigma2_t$, i.e., an upper bound of the reward noise variance at round $t$.
We provide an oracle version for our algorithm characterized by an oracle variance upper bound $sigma2_t$ and a practical version with a novel estimation for this variance bound.
- Score: 9.877915844066338
- License:
- Abstract: By leveraging the representation power of deep neural networks, neural upper confidence bound (UCB) algorithms have shown success in contextual bandits. To further balance the exploration and exploitation, we propose Neural-$\sigma^2$-LinearUCB, a variance-aware algorithm that utilizes $\sigma^2_t$, i.e., an upper bound of the reward noise variance at round $t$, to enhance the uncertainty quantification quality of the UCB, resulting in a regret performance improvement. We provide an oracle version for our algorithm characterized by an oracle variance upper bound $\sigma^2_t$ and a practical version with a novel estimation for this variance bound. Theoretically, we provide rigorous regret analysis for both versions and prove that our oracle algorithm achieves a better regret guarantee than other neural-UCB algorithms in the neural contextual bandits setting. Empirically, our practical method enjoys a similar computational efficiency, while outperforming state-of-the-art techniques by having a better calibration and lower regret across multiple standard settings, including on the synthetic, UCI, MNIST, and CIFAR-10 datasets.
Related papers
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Learning Contextual Bandits Through Perturbed Rewards [107.6210145983805]
We show that a $tildeO(tildedsqrtT)$ regret upper bound is still achievable under standard regularity conditions.
We perturb the rewards when updating the neural network to eliminate the need of explicit exploration.
arXiv Detail & Related papers (2022-01-24T19:10:22Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - Neural Contextual Bandits without Regret [47.73483756447701]
We propose algorithms for contextual bandits harnessing neural networks to approximate the unknown reward function.
We show that our approach converges to the optimal policy at a $tildemathcalO(T-1/2d)$ rate, where $d$ is the dimension of the context.
arXiv Detail & Related papers (2021-07-07T11:11:34Z) - Restless-UCB, an Efficient and Low-complexity Algorithm for Online
Restless Bandits [61.490254407420906]
We study the online restless bandit problem, where the state of each arm evolves according to a Markov chain.
We propose Restless-UCB, a learning policy that follows the explore-then-commit framework.
arXiv Detail & Related papers (2020-11-05T05:16:04Z) - Neural Thompson Sampling [94.82847209157494]
We propose a new algorithm, called Neural Thompson Sampling, which adapts deep neural networks for both exploration and exploitation.
At the core of our algorithm is a novel posterior distribution of the reward, where its mean is the neural network approximator, and its variance is built upon the neural tangent features of the corresponding neural network.
arXiv Detail & Related papers (2020-10-02T07:44:09Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
We formulate two sample multi-armed bandit problems with distorted probabilities on the reward distributions.
We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits.
arXiv Detail & Related papers (2016-11-30T17:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.