PointCG: Self-supervised Point Cloud Learning via Joint Completion and Generation
- URL: http://arxiv.org/abs/2411.06041v1
- Date: Sat, 09 Nov 2024 02:38:29 GMT
- Title: PointCG: Self-supervised Point Cloud Learning via Joint Completion and Generation
- Authors: Yun Liu, Peng Li, Xuefeng Yan, Liangliang Nan, Bing Wang, Honghua Chen, Lina Gong, Wei Zhao, Mingqiang Wei,
- Abstract summary: In this paper, we integrate two prevalent methods, masked point modeling (MPM) and 3D-to-2D generation, as pretext tasks within a pre-training framework.
We leverage the spatial awareness and precise supervision offered by these two methods to address their respective limitations.
- Score: 32.04698431036215
- License:
- Abstract: The core of self-supervised point cloud learning lies in setting up appropriate pretext tasks, to construct a pre-training framework that enables the encoder to perceive 3D objects effectively. In this paper, we integrate two prevalent methods, masked point modeling (MPM) and 3D-to-2D generation, as pretext tasks within a pre-training framework. We leverage the spatial awareness and precise supervision offered by these two methods to address their respective limitations: ambiguous supervision signals and insensitivity to geometric information. Specifically, the proposed framework, abbreviated as PointCG, consists of a Hidden Point Completion (HPC) module and an Arbitrary-view Image Generation (AIG) module. We first capture visible points from arbitrary views as inputs by removing hidden points. Then, HPC extracts representations of the inputs with an encoder and completes the entire shape with a decoder, while AIG is used to generate rendered images based on the visible points' representations. Extensive experiments demonstrate the superiority of the proposed method over the baselines in various downstream tasks. Our code will be made available upon acceptance.
Related papers
- Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes.
We propose the learnable transformation alignment to bridge the domain gap between image and point cloud data.
We establish dense 2D-3D correspondences to estimate the rigid pose.
arXiv Detail & Related papers (2024-01-23T02:41:06Z) - PointLLM: Empowering Large Language Models to Understand Point Clouds [63.39876878899682]
PointLLM understands colored object point clouds with human instructions.
It generates contextually appropriate responses, illustrating its grasp of point clouds and common sense.
arXiv Detail & Related papers (2023-08-31T17:59:46Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Piecewise Planar Hulls for Semi-Supervised Learning of 3D Shape and Pose
from 2D Images [133.68032636906133]
We study the problem of estimating 3D shape and pose of an object in terms of keypoints, from a single 2D image.
The shape and pose are learned directly from images collected by categories and their partial 2D keypoint annotations.
arXiv Detail & Related papers (2022-11-14T16:18:11Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
We propose a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student.
By pair-wise aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification.
arXiv Detail & Related papers (2022-07-07T07:23:20Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.