Wild Narratives: Exploring the Effects of Animal Chatbots on Empathy and Positive Attitudes toward Animals
- URL: http://arxiv.org/abs/2411.06060v1
- Date: Sat, 09 Nov 2024 03:55:53 GMT
- Title: Wild Narratives: Exploring the Effects of Animal Chatbots on Empathy and Positive Attitudes toward Animals
- Authors: Jingshu Li, Aaditya Patwari, Yi-Chieh Lee,
- Abstract summary: This study explores the design of chatbots that embody animal identities for the purpose of eliciting empathy toward animals.
Our findings indicate that such chatbots can significantly increase empathy, improve attitudes, and promote prosocial behavioral intentions toward animals.
These results highlight their potential for use in conservation initiatives, suggesting a promising avenue whereby technology could foster a more informed and empathetic society.
- Score: 3.64584397341127
- License:
- Abstract: Rises in the number of animal abuse cases are reported around the world. While chatbots have been effective in influencing their users' perceptions and behaviors, little if any research has hitherto explored the design of chatbots that embody animal identities for the purpose of eliciting empathy toward animals. We therefore conducted a mixed-methods experiment to investigate how specific design cues in such chatbots can shape their users' perceptions of both the chatbots' identities and the type of animal they represent. Our findings indicate that such chatbots can significantly increase empathy, improve attitudes, and promote prosocial behavioral intentions toward animals, particularly when they incorporate emotional verbal expressions and authentic details of such animals' lives. These results expand our understanding of chatbots with non-human identities and highlight their potential for use in conservation initiatives, suggesting a promising avenue whereby technology could foster a more informed and empathetic society.
Related papers
- OceanChat: The Effect of Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change [70.24245082578167]
This paper presents OceanChat, an interactive system leveraging large language models to create conversational AI agents represented as animated marine creatures.
By balancing anthropomorphism with species authenticity, OceanChat demonstrates how interactive narratives can bridge the gap between environmental knowledge and real-world behavior change.
arXiv Detail & Related papers (2025-02-05T03:45:33Z) - Will you donate money to a chatbot? The effect of chatbot anthropomorphic features and persuasion strategies on willingness to donate [4.431473323414383]
We investigate the effect of personification and persuasion strategies on users' perceptions and donation likelihood.
Results suggest that interaction with a personified chatbots evokes perceived anthropomorphism; however, it does not elicit greater willingness to donate.
In fact, we found that commonly used anthropomorphic features, like name and narrative, led to negative attitudes toward an AI agent in the donation context.
arXiv Detail & Related papers (2024-12-28T02:17:46Z) - Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
Video-based behavioral monitoring has great potential for transforming how we study animal cognition and behavior.
There is still a fairly large gap between the exciting prospects and what can actually be achieved in practice today.
arXiv Detail & Related papers (2024-01-29T18:59:56Z) - Exploring consumers response to text-based chatbots in e-commerce: The
moderating role of task complexity and chatbot disclosure [0.0]
This study aims to explore consumers trust and response to a text-based chatbots in ecommerce.
The consumers perception of both the empathy and friendliness of the chatbots positively impacts their trust in it.
The disclosure of the text based chatbots negatively moderates the relationship between empathy and consumers trust, while it positively moderates the relationship between friendliness and consumers trust.
arXiv Detail & Related papers (2024-01-20T15:17:50Z) - Deceptive AI Ecosystems: The Case of ChatGPT [8.128368463580715]
ChatGPT has gained popularity for its capability in generating human-like responses.
This paper investigates how ChatGPT operates in the real world where societal pressures influence its development and deployment.
We examine the ethical challenges stemming from ChatGPT's deceptive human-like interactions.
arXiv Detail & Related papers (2023-06-18T10:36:19Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
Empathetic conversational agents should not only understand what is being discussed, but also acknowledge the implied feelings of the conversation partner.
We propose a method based on a transformer pretrained language model (T5)
We evaluate our model on the EmpatheticDialogues dataset using both automated metrics and human evaluation.
arXiv Detail & Related papers (2021-10-30T19:04:48Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.