GlocalCLIP: Object-agnostic Global-Local Prompt Learning for Zero-shot Anomaly Detection
- URL: http://arxiv.org/abs/2411.06071v1
- Date: Sat, 09 Nov 2024 05:22:13 GMT
- Title: GlocalCLIP: Object-agnostic Global-Local Prompt Learning for Zero-shot Anomaly Detection
- Authors: Jiyul Ham, Yonggon Jung, Jun-Geol Baek,
- Abstract summary: We introduce glocal contrastive learning to improve the learning of global and local prompts, effectively detecting abnormal patterns across various domains.
The generalization performance of GlocalCLIP in ZSAD was demonstrated on 15 real-world datasets from both the industrial and medical domains.
- Score: 5.530212768657544
- License:
- Abstract: Zero-shot anomaly detection (ZSAD) is crucial for detecting abnormal patterns in target datasets without using training samples, specifically in scenarios where there are distributional differences between the target domain and training data or where data scarcity arises because of restricted access. Although recently pretrained vision-language models demonstrate strong zero-shot performance across various visual tasks, they focus on learning class semantics, which makes their direct application to ZSAD challenging. To address this scenario, we propose GlocalCLIP, which uniquely separates global and local prompts and jointly optimizes them. This approach enables the object-agnostic glocal semantic prompt design to effectively capture general normal and anomalous patterns without dependency on specific objects in the image. We refine the text prompts for more precise adjustments by utilizing deep-text prompt tuning in the text encoder. In the vision encoder, we apply V-V attention layers to capture detailed local image features. Finally, we introduce glocal contrastive learning to improve the complementary learning of global and local prompts, effectively detecting abnormal patterns across various domains. The generalization performance of GlocalCLIP in ZSAD was demonstrated on 15 real-world datasets from both the industrial and medical domains, achieving superior performance compared to existing methods.
Related papers
- ZoRI: Towards Discriminative Zero-Shot Remote Sensing Instance Segmentation [23.40908829241552]
We propose a novel task called zero-shot remote sensing instance segmentation, aimed at identifying aerial objects that are absent from training data.
We introduce a knowledge-injected adaptation strategy that decouples semantic-related information to preserve the pretrained vision-language alignment.
We establish new experimental protocols and benchmarks, and extensive experiments convincingly demonstrate that ZoRI achieves the state-of-art performance.
arXiv Detail & Related papers (2024-12-17T11:00:56Z) - Domain Adaptation with a Single Vision-Language Embedding [45.93202559299953]
We present a new framework for domain adaptation relying on a single Vision-Language (VL) latent embedding instead of full target data.
We show that these mined styles can be used for zero-shot (i.e., target-free) and one-shot unsupervised domain adaptation.
arXiv Detail & Related papers (2024-10-28T17:59:53Z) - Domain-Controlled Prompt Learning [49.45309818782329]
Existing prompt learning methods often lack domain-awareness or domain-transfer mechanisms.
We propose a textbfDomain-Controlled Prompt Learning for the specific domains.
Our method achieves state-of-the-art performance in specific domain image recognition datasets.
arXiv Detail & Related papers (2023-09-30T02:59:49Z) - Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot
Anomaly Localization [63.61093388441298]
Contrastive Language-Image Pre-training models have shown promising performance on zero-shot visual recognition tasks.
In this work, we propose AnoCLIP for zero-shot anomaly localization.
arXiv Detail & Related papers (2023-08-30T10:35:36Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
Single Domain Generalization tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain.
We propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts.
We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss.
arXiv Detail & Related papers (2023-01-13T12:01:18Z) - P{\O}DA: Prompt-driven Zero-shot Domain Adaptation [27.524962843495366]
We adapt a model trained on a source domain using only a general description in natural language of the target domain, i.e., a prompt.
We show that these prompt-driven augmentations can be used to perform zero-shot domain adaptation for semantic segmentation.
arXiv Detail & Related papers (2022-12-06T18:59:58Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
We propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet)
ERPCNet extracts and aggregates localities based on semantic relevance and visual correlations without human-annotated regions.
It not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization.
arXiv Detail & Related papers (2021-11-03T11:13:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.