LT-DARTS: An Architectural Approach to Enhance Deep Long-Tailed Learning
- URL: http://arxiv.org/abs/2411.06098v2
- Date: Wed, 13 Nov 2024 09:31:14 GMT
- Title: LT-DARTS: An Architectural Approach to Enhance Deep Long-Tailed Learning
- Authors: Yuhan Pan, Yanan Sun, Wei Gong,
- Abstract summary: We introduce Long-Tailed Differential Architecture Search (LT-DARTS)
We conduct extensive experiments to explore architectural components that demonstrate better performance on long-tailed data.
This ensures that the architecture obtained through our search process incorporates superior components.
- Score: 5.214135587370722
- License:
- Abstract: Deep long-tailed recognition has been widely studied to address the issue of imbalanced data distributions in real-world scenarios. However, there has been insufficient focus on the design of neural architectures, despite empirical evidence suggesting that architecture can significantly impact performance. In this paper, we attempt to mitigate long-tailed issues through architectural improvements. To simplify the design process, we utilize Differential Architecture Search (DARTS) to achieve this goal. Unfortunately, existing DARTS methods struggle to perform well in long-tailed scenarios. To tackle this challenge, we introduce Long-Tailed Differential Architecture Search (LT-DARTS). Specifically, we conduct extensive experiments to explore architectural components that demonstrate better performance on long-tailed data and propose a new search space based on our observations. This ensures that the architecture obtained through our search process incorporates superior components. Additionally, we propose replacing the learnable linear classifier with an Equiangular Tight Frame (ETF) classifier to further enhance our method. This classifier effectively alleviates the biased search process and prevents performance collapse. Extensive experimental evaluations demonstrate that our approach consistently improves upon existing methods from an orthogonal perspective and achieves state-of-the-art results with simple enhancements.
Related papers
- Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
We propose a novel adaptive learning rate scheduling strategy tailored for the architecture parameters of DARTS.
Our approach dynamically adjusts the learning rate of the architecture parameters based on the training epoch, preventing the disruption of well-trained representations.
arXiv Detail & Related papers (2024-06-11T07:32:25Z) - Masked Autoencoders Are Robust Neural Architecture Search Learners [14.965550562292476]
We propose a novel NAS framework based on Masked Autoencoders (MAE) that eliminates the need for labeled data during the search process.
By replacing the supervised learning objective with an image reconstruction task, our approach enables the robust discovery of network architectures.
arXiv Detail & Related papers (2023-11-20T13:45:21Z) - Making Differentiable Architecture Search less local [9.869449181400466]
Differentiable neural architecture search (DARTS) is a promising NAS approach that dramatically increases search efficiency.
It has been shown to suffer from performance collapse, where the search often leads to detrimental architectures.
We develop a more global optimisation scheme that is able to better explore the space without changing the DARTS problem formulation.
arXiv Detail & Related papers (2021-04-21T10:36:43Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms.
This paper revisits the role of unrolling as a design approach for deep networks, to what extent its resulting special architecture is superior, and can we find better?
Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models.
arXiv Detail & Related papers (2021-04-08T23:01:52Z) - CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared
Person Re-Identification [102.89434996930387]
VI-ReID aims to match cross-modality pedestrian images, breaking through the limitation of single-modality person ReID in dark environment.
Existing works manually design various two-stream architectures to separately learn modality-specific and modality-sharable representations.
We propose a novel method, named Cross-Modality Neural Architecture Search (CM-NAS)
arXiv Detail & Related papers (2021-01-21T07:07:00Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z) - Stabilizing Differentiable Architecture Search via Perturbation-based
Regularization [99.81980366552408]
We find that the precipitous validation loss landscape, which leads to a dramatic performance drop when distilling the final architecture, is an essential factor that causes instability.
We propose a perturbation-based regularization - SmoothDARTS (SDARTS) - to smooth the loss landscape and improve the generalizability of DARTS-based methods.
arXiv Detail & Related papers (2020-02-12T23:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.