NADER: Neural Architecture Design via Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2412.19206v1
- Date: Thu, 26 Dec 2024 13:07:03 GMT
- Title: NADER: Neural Architecture Design via Multi-Agent Collaboration
- Authors: Zekang Yang, Wang Zeng, Sheng Jin, Chen Qian, Ping Luo, Wentao Liu,
- Abstract summary: We introduce NADER, a novel framework that formulates neural architecture design (NAD) as a multi-agent collaboration problem.
We propose the Reflector, which effectively learns from immediate feedback and long-term experiences.
Unlike previous LLM-based methods that use code to represent neural architectures, we utilize a graph-based representation.
- Score: 37.48197934228379
- License:
- Abstract: Designing effective neural architectures poses a significant challenge in deep learning. While Neural Architecture Search (NAS) automates the search for optimal architectures, existing methods are often constrained by predetermined search spaces and may miss critical neural architectures. In this paper, we introduce NADER (Neural Architecture Design via multi-agEnt collaboRation), a novel framework that formulates neural architecture design (NAD) as a LLM-based multi-agent collaboration problem. NADER employs a team of specialized agents to enhance a base architecture through iterative modification. Current LLM-based NAD methods typically operate independently, lacking the ability to learn from past experiences, which results in repeated mistakes and inefficient exploration. To address this issue, we propose the Reflector, which effectively learns from immediate feedback and long-term experiences. Additionally, unlike previous LLM-based methods that use code to represent neural architectures, we utilize a graph-based representation. This approach allows agents to focus on design aspects without being distracted by coding. We demonstrate the effectiveness of NADER in discovering high-performing architectures beyond predetermined search spaces through extensive experiments on benchmark tasks, showcasing its advantages over state-of-the-art methods. The codes will be released soon.
Related papers
- Design Principle Transfer in Neural Architecture Search via Large Language Models [37.004026595537006]
Transferable neural architecture search (TNAS) has been introduced to design efficient neural architectures for multiple tasks.
In TNAS, architectural knowledge accumulated in previous search processes is reused to warm up the architecture search for new tasks.
This work proposes a novel transfer paradigm, i.e., design principle transfer.
arXiv Detail & Related papers (2024-08-21T04:27:44Z) - Masked Autoencoders Are Robust Neural Architecture Search Learners [14.965550562292476]
We propose a novel NAS framework based on Masked Autoencoders (MAE) that eliminates the need for labeled data during the search process.
By replacing the supervised learning objective with an image reconstruction task, our approach enables the robust discovery of network architectures.
arXiv Detail & Related papers (2023-11-20T13:45:21Z) - An Approach for Efficient Neural Architecture Search Space Definition [0.0]
We propose a novel cell-based hierarchical search space, easy to comprehend and manipulate.
The objectives of the proposed approach are to optimize the search-time and to be general enough to handle most of state of the art CNN architectures.
arXiv Detail & Related papers (2023-10-25T08:07:29Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
We present an approach called Conceptual Expansion Neural Architecture Search (CENAS)
It combines a sample-efficient, computational creativity-inspired transfer learning approach with neural architecture search.
It finds models faster than naive architecture search via transferring existing weights to approximate the parameters of the new model.
arXiv Detail & Related papers (2021-10-07T02:29:26Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms.
This paper revisits the role of unrolling as a design approach for deep networks, to what extent its resulting special architecture is superior, and can we find better?
Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models.
arXiv Detail & Related papers (2021-04-08T23:01:52Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z) - Does Unsupervised Architecture Representation Learning Help Neural
Architecture Search? [22.63641173256389]
Existing Neural Architecture Search (NAS) methods either encode neural architectures using discrete encodings that do not scale well, or adopt supervised learning-based methods to jointly learn architecture representations and optimize architecture search on such representations which incurs search bias.
We observe that the structural properties of neural architectures are hard to preserve in the latent space if architecture representation learning and search are coupled, resulting in less effective search performance.
arXiv Detail & Related papers (2020-06-12T04:15:34Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.