BM-PAW: A Profitable Mining Attack in the PoW-based Blockchain System
- URL: http://arxiv.org/abs/2411.06187v1
- Date: Sat, 09 Nov 2024 13:59:55 GMT
- Title: BM-PAW: A Profitable Mining Attack in the PoW-based Blockchain System
- Authors: Junjie Hu, Xunzhi Chen, Huan Yan, Na Ruan,
- Abstract summary: We introduce a novel mining strategy, named BM-PAW, which yields superior rewards for both the attacker and the targeted pool.
We find the BM-PAW attacker can circumvent the "miner's dilemma" through equilibrium analysis in a two-pool BM-PAW game scenario.
- Score: 9.292531856119329
- License:
- Abstract: Mining attacks enable an adversary to procure a disproportionately large portion of mining rewards by deviating from honest mining practices within the PoW-based blockchain system. In this paper, we demonstrate that the security vulnerabilities of PoW-based blockchain extend beyond what these mining attacks initially reveal. We introduce a novel mining strategy, named BM-PAW, which yields superior rewards for both the attacker and the targeted pool compared to the state-of-the-art mining attack: PAW. Our analysis reveals that BM-PAW attackers are incentivized to offer appropriate bribe money to other targets, as they comply with the attacker's directives upon receiving payment. We find the BM-PAW attacker can circumvent the "miner's dilemma" through equilibrium analysis in a two-pool BM-PAW game scenario, wherein the outcome is determined by the attacker's mining power. We finally propose practical countermeasures to mitigate these novel pool attacks.
Related papers
- Bitcoin Under Volatile Block Rewards: How Mempool Statistics Can Influence Bitcoin Mining [5.893888881448058]
As Bitcoin experiences more halving events, the protocol reward converges to zero, making transaction fees the primary source of miner rewards.
Previous security analyses of Bitcoin have either considered a fixed block reward model or a highly simplified volatile model.
We present a reinforcement learning-based tool designed to analyze mining strategies under a more realistic volatile model.
arXiv Detail & Related papers (2024-11-18T16:29:20Z) - Examining Attacks on Consensus and Incentive Systems in Proof-of-Work Blockchains: A Systematic Literature Review [0.0]
Bitcoin's security relies on a decentralized ledger consisting of a consensus and an incentive mechanism.
As Bitcoin's acceptance grows, it faces increasing threats from attacks targeting these mechanisms.
This paper begins by examining individual attacks executed in isolation and their profitability.
It then explores how combining these attacks with each other or with other malicious and non-malicious strategies can enhance their overall effectiveness and profitability.
arXiv Detail & Related papers (2024-11-01T04:18:42Z) - Rethinking Targeted Adversarial Attacks For Neural Machine Translation [56.10484905098989]
This paper presents a new setting for NMT targeted adversarial attacks that could lead to reliable attacking results.
Under the new setting, it then proposes a Targeted Word Gradient adversarial Attack (TWGA) method to craft adversarial examples.
Experimental results demonstrate that our proposed setting could provide faithful attacking results for targeted adversarial attacks on NMT systems.
arXiv Detail & Related papers (2024-07-07T10:16:06Z) - Stealthy Adversarial Attacks on Stochastic Multi-Armed Bandits [46.6541562214783]
Adversarial attacks against multi-armed bandit (MAB) algorithms have been extensively studied in the literature.
In this work, we focus on reward poisoning attacks and find most existing attacks can be easily detected by our proposed detection method.
This motivates us to study the notion of stealthy attack against MABs and investigate the resulting attackability.
arXiv Detail & Related papers (2024-02-21T02:54:00Z) - Bribe & Fork: Cheap Bribing Attacks via Forking Threat [2.9061423802698565]
Bribe & Fork is a modified bribing attack that leverages the threat of a so-called feather fork.
We empirically analyze historical data of some real-world blockchain implementations to evaluate the scale of this cost reduction.
Our findings shed more light on the potential vulnerability of PCNs and highlight the need for robust solutions.
arXiv Detail & Related papers (2024-02-02T12:33:14Z) - New intelligent defense systems to reduce the risks of Selfish Mining
and Double-Spending attacks using Learning Automata [0.43512163406551996]
We introduce a new attack that combines double-spending and selfish mining attacks.
We develop two models, namely the SDTLA and WVBM, which can effectively defend against selfish mining attacks.
Our findings highlight the potential of SDTLA and WVBM as promising solutions for enhancing the security and efficiency of blockchain networks.
arXiv Detail & Related papers (2023-07-02T09:46:05Z) - Partial Selfish Mining for More Profits [21.636578888742477]
Mining attacks aim to gain an unfair share of extra rewards in the blockchain mining.
In this paper, we propose a new and feasible Partial Selfish Mining (PSM) attack.
We show that PSM attackers can be more profitable than selfish miners under a certain range of mining power and network conditions.
arXiv Detail & Related papers (2022-07-27T11:58:38Z) - Adversarial Attacks on Gaussian Process Bandits [47.84198626686564]
We propose various adversarial attack methods with differing assumptions on the attacker's strength and prior information.
Our goal is to understand adversarial attacks on GP bandits from both a theoretical and practical perspective.
We demonstrate that adversarial attacks on GP bandits can succeed in forcing the algorithm towards $mathcalR_rm target$ even with a low attack budget.
arXiv Detail & Related papers (2021-10-16T02:39:10Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
We propose two attacks against deep ranking systems that can raise or lower the rank of chosen candidates by adversarial perturbations.
Conversely, an anti-collapse triplet defense is proposed to improve the ranking model robustness against all proposed attacks.
Our adversarial ranking attacks and defenses are evaluated on MNIST, Fashion-MNIST, CUB200-2011, CARS196 and Stanford Online Products datasets.
arXiv Detail & Related papers (2021-06-07T13:41:45Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) is a framework that models the crafting of adversarial examples.
AEG provides a new way to design adversarial examples by adversarially training a generator and aversa from a given hypothesis class.
We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2020-07-01T19:47:23Z) - Action-Manipulation Attacks Against Stochastic Bandits: Attacks and
Defense [45.408568528354216]
We introduce a new class of attack named action-manipulation attack.
In this attack, an adversary can change the action signal selected by the user.
To defend against this class of attacks, we introduce a novel algorithm that is robust to action-manipulation attacks.
arXiv Detail & Related papers (2020-02-19T04:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.