論文の概要: Robust Detection of LLM-Generated Text: A Comparative Analysis
- arxiv url: http://arxiv.org/abs/2411.06248v1
- Date: Sat, 09 Nov 2024 18:27:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:18.515190
- Title: Robust Detection of LLM-Generated Text: A Comparative Analysis
- Title(参考訳): LLMテキストのロバスト検出:比較分析
- Authors: Yongye Su, Yuqing Wu,
- Abstract要約: 大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License:
- Abstract: The ability of large language models to generate complex texts allows them to be widely integrated into many aspects of life, and their output can quickly fill all network resources. As the impact of LLMs grows, it becomes increasingly important to develop powerful detectors for the generated text. This detector is essential to prevent the potential misuse of these technologies and to protect areas such as social media from the negative effects of false content generated by LLMS. The main goal of LLM-generated text detection is to determine whether text is generated by an LLM, which is a basic binary classification task. In our work, we mainly use three different classification methods based on open source datasets: traditional machine learning techniques such as logistic regression, k-means clustering, Gaussian Naive Bayes, support vector machines, and methods based on converters such as BERT, and finally algorithms that use LLMs to detect LLM-generated text. We focus on model generalization, potential adversarial attacks, and accuracy of model evaluation. Finally, the possible research direction in the future is proposed, and the current experimental results are summarized.
- Abstract(参考訳): 大規模言語モデルが複雑なテキストを生成する能力により、生命の様々な側面に広く統合され、その出力はすべてのネットワークリソースを迅速に満たすことができる。
LLMの影響が増大するにつれて、生成されたテキストの強力な検出器を開発することがますます重要になる。
この検出器は、これらの技術の潜在的な誤用を防ぎ、LLMSによって生成された偽コンテンツの負の効果からソーシャルメディアなどの領域を保護するために不可欠である。
LLM生成テキスト検出の主な目的は、基本的なバイナリ分類タスクであるLLMによってテキストが生成されるかどうかを決定することである。
本研究では,ロジスティック回帰,k平均クラスタリング,ガウスネーブベイズ,ベクトルマシンのサポート,BERTなどのコンバータに基づく手法,LLMを用いてLLM生成テキストを検出するアルゴリズムの3つの異なる分類手法を主に使用した。
本稿では,モデル一般化,潜在的な敵攻撃,モデル評価の精度に着目した。
最後に,今後の研究の方向性を概説し,現在の実験結果について概説する。
関連論文リスト
- "I know myself better, but not really greatly": Using LLMs to Detect and Explain LLM-Generated Texts [10.454446545249096]
大規模言語モデル(LLM)は、人間のようなテキストを生成する際、印象的な能力を示した。
本稿では,LLMによる人為的テキストの検出と説明機能について検討する。
論文 参考訳(メタデータ) (2025-02-18T11:00:28Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Towards Reliable Detection of LLM-Generated Texts: A Comprehensive Evaluation Framework with CUDRT [9.682499180341273]
大規模言語モデル(LLM)はテキスト生成が大幅に進歩しているが、その出力の人間的な品質は大きな課題を呈している。
中国語と英語の総合的な評価フレームワークとバイリンガルベンチマークであるCUDRTを提案する。
このフレームワークは、スケーラブルで再現可能な実験をサポートし、運用の多様性、多言語トレーニングセット、LLMアーキテクチャが検出性能に与える影響を分析する。
論文 参考訳(メタデータ) (2024-06-13T12:43:40Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
大型言語モデル (LLM) は人間の好むテキストを生成する。
本稿では,これらのモデルで共有される共通特性について述べる。
報奨モデルの検出能力をさらに向上する2つのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:38:33Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - LLM-Detector: Improving AI-Generated Chinese Text Detection with
Open-Source LLM Instruction Tuning [4.328134379418151]
既存のAI生成テキスト検出モデルでは、ドメイン内のオーバーフィットが難しくなる。
LLM-Detectorは文書レベルと文レベルのテキスト検出のための新しい手法である。
論文 参考訳(メタデータ) (2024-02-02T05:54:12Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
本研究では,大言語モデル(LLM)の制約付きテキスト生成について検討する。
本研究は主に,制約を語彙型,構造型,関係型に分類するオープンソース LLM に重点を置いている。
その結果、LLMの能力と不足を照らし、制約を取り入れ、制約付きテキスト生成における将来の発展に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-10-25T03:58:49Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
LLM生成テキストを検出できる検出器を開発する必要がある。
このことは、LLMが生成するコンテンツの有害な影響から、LLMの潜在的な誤用や、芸術的表現やソーシャルネットワークのような保護領域の軽減に不可欠である。
この検出器技術は、ウォーターマーキング技術、統計ベースの検出器、神経ベース検出器、そして人間の支援手法の革新によって、最近顕著な進歩をみせている。
論文 参考訳(メタデータ) (2023-10-23T09:01:13Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
大規模言語モデル(LLM)は、高品質な人間によるテキストに非常に近い。
既存の検出ツールは、機械が生成したテキストと人間によるテキストしか区別できない。
本稿では,モデル固有,セキュア,効率的,拡張可能な検出ツールであるLLMDetを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。