論文の概要: Quasi-random Multi-Sample Inference for Large Language Models
- arxiv url: http://arxiv.org/abs/2411.06251v1
- Date: Sat, 09 Nov 2024 18:55:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:55.336634
- Title: Quasi-random Multi-Sample Inference for Large Language Models
- Title(参考訳): 大規模言語モデルに対する擬似ランダムマルチサンプル推論
- Authors: Aditya Parashar, Aditya Vikram Singh, Avinash Amballa, Jinlin Lai, Benjamin Rozonoyer,
- Abstract要約: 大規模言語モデル(LLM)は、しばしばマルチサンプルデコード戦略を備えている。
ビームサーチやサンプリングベース技術のような従来のテキスト生成手法には、顕著な制限がある。
本研究では,算術的サンプリングの可能性について検討し,祖先的サンプリングと対比する。
- 参考スコア(独自算出の注目度): 1.647759094903376
- License:
- Abstract: Large language models (LLMs) are often equipped with multi-sample decoding strategies. An LLM implicitly defines an arithmetic code book, facilitating efficient and embarrassingly parallelizable \textbf{arithmetic sampling} to produce multiple samples using quasi-random codes. Traditional text generation methods, such as beam search and sampling-based techniques, have notable limitations: they lack parallelizability or diversity of sampled sequences. This study explores the potential of arithmetic sampling, contrasting it with ancestral sampling across two decoding tasks that employ multi-sample inference: chain-of-thought reasoning with self-consistency and machine translation with minimum Bayes risk decoding. Our results demonstrate that arithmetic sampling produces more diverse samples, significantly improving reasoning and translation performance as the sample size increases. We observe a $\mathbf{3\text{-}5\%}$ point increase in accuracy on the GSM8K dataset and a $\mathbf{0.45\text{-}0.89\%}$ point increment in COMET score for WMT19 tasks using arithmetic sampling without any significant computational overhead.
- Abstract(参考訳): 大規模言語モデル(LLM)は、しばしばマルチサンプルデコード戦略を備えている。
LLMは算術符号帳を暗黙的に定義し、擬似ランダム符号を用いて複数のサンプルを生成するために効率よく、恥ずかしく並列化可能な \textbf{arithmetic sample} を容易にする。
ビームサーチやサンプリングベース手法のような従来のテキスト生成手法には、並列化性やサンプルシーケンスの多様性に欠ける、顕著な制限がある。
本研究は,マルチサンプル推論を用いた2つの復号化タスク,すなわち自己整合性を考慮したチェーン・オブ・シント推論,最小ベイズリスク復号化による機械翻訳における算術的サンプリングの可能性について検討する。
その結果,算術的なサンプリングによりより多様なサンプルが生成され,サンプルサイズが大きくなるにつれて推論や翻訳性能が大幅に向上した。
GSM8Kデータセット上では$\mathbf{3\text{-}5\%}$点増分と$\mathbf{0.45\text{-}0.89\%}$点増分をWMT19タスクのCOMETスコアで観測する。
関連論文リスト
- Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
本稿では,各復号工程における多様性とリスクのトレードオフを考慮し,トラクションサンプリング手法の本質的な能力を推定する体系的手法を提案する。
本研究は,既存のトラクションサンプリング手法の総合的な比較と,ユーザのガイドラインとして推奨されるパラメータについて紹介する。
論文 参考訳(メタデータ) (2024-08-24T14:14:32Z) - Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs [4.122612309805664]
大規模言語モデル(LLM)は、各復号ステップにおける語彙上の確率分布から次のトークンをサンプリングしてテキストを生成する。
トップトークンの確率に応じてスケールすることでモデルの信頼度に基づいてサンプリングしきい値を調整する動的トランケーション法である min-p サンプリングを提案する。
我々はGPQA、GSM8K、AlpacaEval Creative Writingなどのベンチマーク実験を行い、min-pサンプリングが生成したテキストの品質と多様性を特に高温で改善することを示した。
論文 参考訳(メタデータ) (2024-07-01T08:37:25Z) - A Block Metropolis-Hastings Sampler for Controllable Energy-based Text
Generation [78.81021361497311]
我々は,大規模言語モデルの反復的プロンプトを通じて,各ステップにおけるシーケンス全体の書き直しを提案する新しいメトロポリス・ハスティングス(MH)サンプリング器を開発した。
対象分布からより効率的かつ正確なサンプリングが可能となり, (b) 事前に固定するのではなく, サンプリング手順により生成長を決定することが可能となった。
論文 参考訳(メタデータ) (2023-12-07T18:30:15Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - MacLaSa: Multi-Aspect Controllable Text Generation via Efficient
Sampling from Compact Latent Space [110.85888003111653]
マルチアスペクト制御可能なテキスト生成は、複数の望ましい属性を同時に持つ流動文を生成することを目的としている。
マルチアスペクト制御のための新しいアプローチ、すなわちMacLaSaを導入し、複数の側面に対してコンパクトな潜在空間を推定する。
また,MacLaSaは,高い推論速度を維持しつつ,属性関連性やテキスト品質を高いベースラインで向上させることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:30:35Z) - Epsilon Sampling Rocks: Investigating Sampling Strategies for Minimum
Bayes Risk Decoding for Machine Translation [20.749494856466526]
最小ベイズリスク復号法における候補リスト生成のためのサンプリング手法の違いが性能に与える影響を示す。
それらの限界に対する洞察に基づいて、最近提案されたエプシロンサンプリングアプローチを実験し、エプシロンよりも小さい確率で全てのトークンを掘り起こす。
論文 参考訳(メタデータ) (2023-05-17T00:11:38Z) - Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models [65.52639709094963]
ビームサーチやガンベルトップkサンプリングのような手法は、ビームの各要素に対して異なる出力を保証できるが、並列化は容易ではない。
本稿では,大言語モデルによって暗黙的に定義された算術符号書に従ってサンプリングを行うフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-18T22:19:41Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Parallel Sampling for Efficient High-dimensional Bayesian Network
Structure Learning [6.85316573653194]
本稿では,CPS(Candidate Parent Sets)上で並列サンプリングを行う近似アルゴリズムについて述べる。
修正アルゴリズムはParallel Sampling MINOBS (PS-MINOBS) と呼ばれ、各変数のCPSをサンプリングすることでグラフを構成する。
論文 参考訳(メタデータ) (2022-02-19T22:35:59Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
スライスサンプリング (Slice Sampling) は、最小ハンドチューニングで目標分布の特性に適応するマルコフ連鎖モンテカルロアルゴリズムとして登場した。
本稿では,初期長さ尺度を適応的に調整することで,そのような困難を回避できるアルゴリズムであるEnsemble Slice Sampling(ESS)を紹介する。
これらのアフィン不変アルゴリズムは簡単に構築でき、手作業で調整する必要がなく、並列計算環境で容易に実装できる。
論文 参考訳(メタデータ) (2020-02-14T19:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。