論文の概要: TinyML NLP Approach for Semantic Wireless Sentiment Classification
- arxiv url: http://arxiv.org/abs/2411.06291v1
- Date: Sat, 09 Nov 2024 21:26:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:37.645826
- Title: TinyML NLP Approach for Semantic Wireless Sentiment Classification
- Title(参考訳): TinyML NLPによるセマンティック無線感性分類
- Authors: Ahmed Y. Radwan, Mohammad Shehab, Mohamed-Slim Alouini,
- Abstract要約: 本稿では,エネルギー効率のよいプライバシ保護型小型機械学習(MLTiny)方式としてスプリットラーニング(SL)を導入する。
その結果,SLは高い精度を維持しながら処理能力とCO2排出量を低減し,FLは効率とプライバシのバランスのとれた妥協を提供することがわかった。
- 参考スコア(独自算出の注目度): 49.801175302937246
- License:
- Abstract: Natural Language Processing (NLP) operations, such as semantic sentiment analysis and text synthesis, may often impair users' privacy and demand significant on device computational resources. Centralized learning (CL) on the edge offers an alternative energy-efficient approach, yet requires the collection of raw information, which affects the user's privacy. While Federated learning (FL) preserves privacy, it requires high computational energy on board tiny user devices. We introduce split learning (SL) as an energy-efficient alternative, privacy-preserving tiny machine learning (TinyML) scheme and compare it to FL and CL in the presence of Rayleigh fading and additive noise. Our results show that SL reduces processing power and CO2 emissions while maintaining high accuracy, whereas FL offers a balanced compromise between efficiency and privacy. Hence, this study provides insights into deploying energy-efficient, privacy-preserving NLP models on edge devices.
- Abstract(参考訳): セマンティックな感情分析やテキスト合成といった自然言語処理(NLP)操作は、デバイスの計算資源に対するユーザのプライバシや要求を損なうことがある。
エッジ上の集中学習(CL)は、代替のエネルギー効率の高いアプローチを提供するが、ユーザのプライバシに影響を与える生情報の収集が必要である。
フェデレーテッド・ラーニング(FL)はプライバシを保存するが、小さなユーザデバイス上では高い計算エネルギーを必要とする。
エネルギー効率のよい小さな機械学習(TinyML)方式としてスプリットラーニング(SL)を導入し,レイリーフェディングや付加雑音の存在下でFLやCLと比較した。
その結果,SLは高い精度を維持しながら処理能力とCO2排出量を低減し,FLは効率とプライバシのバランスのとれた妥協を提供することがわかった。
そこで本研究では,エッジデバイスにエネルギー効率の高いプライバシ保護型NLPモデルをデプロイする際の知見を提供する。
関連論文リスト
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - DRL-Based Resource Allocation for Motion Blur Resistant Federated Self-Supervised Learning in IoV [27.713716107122572]
Internet of Vehicles (IoV)では、フェデレートラーニング(FL)が、データを共有せずにローカルモデルを集約することで、プライバシ保護ソリューションを提供する。
従来の教師付き学習はラベル付きイメージデータを必要とするが、データラベリングにはかなりの手作業が必要となる。
我々は,深層強化学習(DRL)に基づく資源配分方式を提案することにより,BFSSLプロセスのエネルギー消費と遅延に対処する。
論文 参考訳(メタデータ) (2024-08-17T13:12:04Z) - Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning [51.02352381270177]
Split Federated Learning (SFL)は、最近、有望な分散学習技術として登場した。
SFLにおけるカット層の選択は、クライアントのエネルギー消費とプライバシに大きな影響を与える可能性がある。
本稿では、SFLプロセスの概要を概観し、エネルギー消費とプライバシを徹底的に分析する。
論文 参考訳(メタデータ) (2023-11-15T23:23:42Z) - User Assignment and Resource Allocation for Hierarchical Federated
Learning over Wireless Networks [20.09415156099031]
階層FL(Hierarchical FL)は、効率的なリソース割り当てと適切なユーザ割り当てによって、エネルギー消費とレイテンシを低減する。
本稿では,スペクトル資源最適化アルゴリズム(SROA)とHFLのための2段階CPUアルゴリズム(TSIA)を提案する。
実験により,提案したHFLフレームワークは,エネルギーと遅延低減に関する既存の研究よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-17T12:10:39Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための協調学習フレームワークである。
既存のFLシステムはトレーニングアルゴリズムとしてフェデレーション平均(FedAvg)を採用するのが一般的である。
差分プライバシーを保証する通信効率のよいFLトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-07T06:07:04Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Amplitude-Varying Perturbation for Balancing Privacy and Utility in
Federated Learning [86.08285033925597]
本稿では,フェデレート学習のプライバシを保護するため,時変雑音振幅を持つ新しいDP摂動機構を提案する。
我々は、FLの過度な摂動ノイズによる早期収束を防止するために、シリーズのオンラインリファインメントを導出した。
新しいDP機構のプライバシ保存FLの収束と精度への寄与は、持続的な雑音振幅を持つ最先端のガウスノイズ機構と比較して相関する。
論文 参考訳(メタデータ) (2023-03-07T22:52:40Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated Edge Learning (FEEL) は次世代無線ネットワークにおいて有望な分散学習技術である。
FEELは、モデルトレーニングラウンド中に消費される電力により、エネルギー制約された参加機器の寿命を大幅に短縮する可能性がある。
本稿では,FEELラウンドにおける計算および通信エネルギー消費を最小化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T13:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。