論文の概要: Deep Active Learning in the Open World
- arxiv url: http://arxiv.org/abs/2411.06353v1
- Date: Sun, 10 Nov 2024 04:04:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:43.340385
- Title: Deep Active Learning in the Open World
- Title(参考訳): オープンワールドにおけるディープラーニング
- Authors: Tian Xie, Jifan Zhang, Haoyue Bai, Robert Nowak,
- Abstract要約: オープンワールドのシナリオにデプロイされた機械学習モデルは、よく馴染みのない状況に遭遇し、予期しない状況でうまく機能しない。
我々は、新しいOODクラスを組み込むことで、モデル適応性を高めるように設計されたオープンワールド環境のための新しい能動的学習アルゴリズムであるALOEを紹介する。
以上の結果から,既知のクラスのパフォーマンス向上と新たなクラス発見との重大なトレードオフが明らかとなり,オープンワールド機械学習の進歩のステージが整った。
- 参考スコア(独自算出の注目度): 13.2318584850986
- License:
- Abstract: Machine learning models deployed in open-world scenarios often encounter unfamiliar conditions and perform poorly in unanticipated situations. As AI systems advance and find application in safety-critical domains, effectively handling out-of-distribution (OOD) data is crucial to building open-world learning systems. In this work, we introduce ALOE, a novel active learning algorithm for open-world environments designed to enhance model adaptation by incorporating new OOD classes via a two-stage approach. First, diversity sampling selects a representative set of examples, followed by energy-based OOD detection to prioritize likely unknown classes for annotation. This strategy accelerates class discovery and learning, even under constrained annotation budgets. Evaluations on three long-tailed image classification benchmarks demonstrate that ALOE outperforms traditional active learning baselines, effectively expanding known categories while balancing annotation cost. Our findings reveal a crucial tradeoff between enhancing known-class performance and discovering new classes, setting the stage for future advancements in open-world machine learning.
- Abstract(参考訳): オープンワールドのシナリオにデプロイされた機械学習モデルは、よく馴染みのない状況に遭遇し、予期しない状況でうまく機能しない。
AIシステムが安全クリティカルな領域に応用を見出すにつれ、オープンワールド学習システムを構築する上では、効果的にアウト・オブ・ディストリビューション(OOD)データを扱うことが不可欠である。
本研究では,オープンワールド環境のための新しい能動的学習アルゴリズムであるALOEを紹介する。
まず、多様性サンプリングが代表的な例を選択し、次にエネルギーベースのOOD検出によって、アノテーションのために未知のクラスを優先順位付けする。
この戦略は、制約付きアノテーションの予算の下でも、クラス発見と学習を加速します。
3つのロングテール画像分類ベンチマークの評価は、ALOEが従来のアクティブラーニングベースラインより優れており、アノテーションコストのバランスを保ちながら、既知のカテゴリを効果的に拡張していることを示している。
以上の結果から,既知のクラスのパフォーマンス向上と新たなクラス発見との重大なトレードオフが明らかとなり,オープンワールド機械学習の進歩のステージが整った。
関連論文リスト
- A Unified and General Framework for Continual Learning [58.72671755989431]
継続学習(CL)は、以前取得した知識を維持しながら、動的かつ変化するデータ分布から学ぶことに焦点を当てている。
正規化ベース、ベイズベース、メモリ再生ベースなど、破滅的な忘れ込みの課題に対処する様々な手法が開発されている。
本研究の目的は,既存の方法論を包含し,整理する包括的かつ包括的な枠組みを導入することで,このギャップを埋めることである。
論文 参考訳(メタデータ) (2024-03-20T02:21:44Z) - Detecting and Learning Out-of-Distribution Data in the Open world:
Algorithm and Theory [15.875140867859209]
この論文は、特にオープンワールドシナリオのコンテキストにおいて、機械学習の領域に貢献する。
オープンワールド機械学習に不可欠な2つの段階:アウト・オブ・ディストリビューション(OOD)検出とオープンワールド表現学習(ORL)
論文 参考訳(メタデータ) (2023-10-10T00:25:21Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - SegPrompt: Boosting Open-world Segmentation via Category-level Prompt
Learning [49.17344010035996]
オープンワールドインスタンスセグメンテーション(OWIS)モデルは、クラスに依存しない方法で未知のオブジェクトを検出する。
以前のOWISは、未知のオブジェクトに一般化するモデルの能力を維持するために、トレーニング中のカテゴリ情報を完全に消去するアプローチだった。
そこで本研究では,モデルのクラスに依存しないセグメンテーション能力を改善するためにカテゴリ情報を利用するSegPromptと呼ばれる新しいトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T11:25:39Z) - Open Long-Tailed Recognition in a Dynamic World [82.91025831618545]
実世界のデータは、しばしば長い尾を持ち、(目に見えないクラスを持つ)オープンな分布を示す。
現実的な認識システムは、多数派(頭)クラスと少数派(尾)クラスの間でバランスを取り、分布を一般化し、見知らぬクラス(オープンクラス)のインスタンスで新規性を認める必要がある。
我々は,Open Long-Tailed Recognition++を,このような自然分布データからの学習として定義し,バランスの取れたテストセット上での分類精度を最適化する。
論文 参考訳(メタデータ) (2022-08-17T15:22:20Z) - SHELS: Exclusive Feature Sets for Novelty Detection and Continual
Learning Without Class Boundaries [22.04165296584446]
Sparse High-Exclusive, Low-level-Shared feature representation (SHELS)を導入する。
SHELSは、ハイレベルな特徴の排他的セットと、必須で共有された低レベルな特徴の学習を促進する。
新規性検出にSHELSを用いることで,最先端のOOD検出法よりも統計的に有意な改善が得られた。
論文 参考訳(メタデータ) (2022-06-28T03:09:55Z) - Active Learning for Open-set Annotation [38.739845944840454]
我々はLfOSAと呼ばれる新しいアクティブラーニングフレームワークを提案する。このフレームワークは、効果的なサンプリング戦略を用いて分類性能を高め、アノテーションのための既知のクラスからサンプルを正確に検出する。
実験結果から,提案手法は既知のクラスの選択精度を著しく向上し,アノテーションコストの低い分類精度を最先端の能動学習法よりも向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-18T06:11:51Z) - Bayesian Embeddings for Few-Shot Open World Recognition [60.39866770427436]
埋め込みベースの数ショット学習アルゴリズムをオープンワールド認識設定に拡張する。
当社のフレームワークは,MiniImageNetとTieredImageNetによる数ショット学習データセットのオープンワールド拡張をベンチマークする。
論文 参考訳(メタデータ) (2021-07-29T00:38:47Z) - Open-World Semi-Supervised Learning [66.90703597468377]
本稿では,従来のクラスを認識するためにモデルを必要とする,新しいオープンワールド半教師付き学習環境を提案する。
データの分類とクラスタ化を同時に行うアプローチであるORCAを提案する。
我々は,ORCAが新しいクラスを正確に発見し,ベンチマーク画像分類データセット上で以前に見られたクラスにサンプルを割り当てることを示した。
論文 参考訳(メタデータ) (2021-02-06T07:11:07Z) - Task-Adaptive Negative Class Envision for Few-Shot Open-Set Recognition [36.53830822788852]
新しいソースからのクエリに堅牢な認識システムを学ぶための、数発のオープンセット認識(FSOR)の問題について研究する。
オープン世界をモデル化する新しいタスク適応型負クラスビジュアライゼーション手法(tane)を提案する。
本手法は, オープンセット認識における最先端の性能を大幅に向上させる。
論文 参考訳(メタデータ) (2020-12-24T02:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。