Optimal Execution with Reinforcement Learning
- URL: http://arxiv.org/abs/2411.06389v1
- Date: Sun, 10 Nov 2024 08:21:03 GMT
- Title: Optimal Execution with Reinforcement Learning
- Authors: Yadh Hafsi, Edoardo Vittori,
- Abstract summary: This study investigates the development of an optimal execution strategy through reinforcement learning.
We present a custom MDP formulation followed by the results of our methodology and benchmark the performance against standard execution strategies.
- Score: 0.4972323953932129
- License:
- Abstract: This study investigates the development of an optimal execution strategy through reinforcement learning, aiming to determine the most effective approach for traders to buy and sell inventory within a limited time frame. Our proposed model leverages input features derived from the current state of the limit order book. To simulate this environment and overcome the limitations associated with relying on historical data, we utilize the multi-agent market simulator ABIDES, which provides a diverse range of depth levels within the limit order book. We present a custom MDP formulation followed by the results of our methodology and benchmark the performance against standard execution strategies. Our findings suggest that the reinforcement learning-based approach demonstrates significant potential.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
We study the problem of exploration in Reinforcement Learning and present a novel model-free solution.
Our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches.
arXiv Detail & Related papers (2024-06-30T19:00:49Z) - Deep Limit Order Book Forecasting [2.771933807499954]
We exploit cutting-edge deep learning methodologies to explore predictability of high-frequency Limit Order Book mid-price changes.
We release LOBFrame', an open-source code base to efficiently process large-scale Limit Order Book data.
arXiv Detail & Related papers (2024-03-14T10:44:10Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - LOB-Based Deep Learning Models for Stock Price Trend Prediction: A
Benchmark Study [4.714825039388054]
We develop an open-source framework that incorporates data preprocessing, DL model training, evaluation and profit analysis.
Our experiments reveal that all models exhibit a significant performance drop when exposed to new data, thereby raising questions about their real-world market applicability.
arXiv Detail & Related papers (2023-07-05T14:28:38Z) - Optimizing Credit Limit Adjustments Under Adversarial Goals Using
Reinforcement Learning [42.303733194571905]
We seek to find and automatize an optimal credit card limit adjustment policy by employing reinforcement learning techniques.
Our research establishes a conceptual structure for applying reinforcement learning framework to credit limit adjustment.
arXiv Detail & Related papers (2023-06-27T16:10:36Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Deep Inventory Management [3.578617477295742]
We present a Deep Reinforcement Learning approach to solving a periodic review inventory control system.
We show that several policy learning approaches are competitive with or outperform classical baseline approaches.
arXiv Detail & Related papers (2022-10-06T18:00:25Z) - Techniques Toward Optimizing Viewability in RTB Ad Campaigns Using
Reinforcement Learning [0.0]
Reinforcement learning (RL) is an effective technique for training decision-making agents through interactions with their environment.
In digital advertising, real-time bidding (RTB) is a common method of allocating advertising inventory through real-time auctions.
arXiv Detail & Related papers (2021-05-21T21:56:12Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.