Deep Limit Order Book Forecasting
- URL: http://arxiv.org/abs/2403.09267v4
- Date: Tue, 4 Jun 2024 07:05:33 GMT
- Title: Deep Limit Order Book Forecasting
- Authors: Antonio Briola, Silvia Bartolucci, Tomaso Aste,
- Abstract summary: We exploit cutting-edge deep learning methodologies to explore predictability of high-frequency Limit Order Book mid-price changes.
We release LOBFrame', an open-source code base to efficiently process large-scale Limit Order Book data.
- Score: 2.771933807499954
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We exploit cutting-edge deep learning methodologies to explore the predictability of high-frequency Limit Order Book mid-price changes for a heterogeneous set of stocks traded on the NASDAQ exchange. In so doing, we release `LOBFrame', an open-source code base to efficiently process large-scale Limit Order Book data and quantitatively assess state-of-the-art deep learning models' forecasting capabilities. Our results are twofold. We demonstrate that the stocks' microstructural characteristics influence the efficacy of deep learning methods and that their high forecasting power does not necessarily correspond to actionable trading signals. We argue that traditional machine learning metrics fail to adequately assess the quality of forecasts in the Limit Order Book context. As an alternative, we propose an innovative operational framework that evaluates predictions' practicality by focusing on the probability of accurately forecasting complete transactions. This work offers academics and practitioners an avenue to make informed and robust decisions on the application of deep learning techniques, their scope and limitations, effectively exploiting emergent statistical properties of the Limit Order Book.
Related papers
- Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry [13.121155604809372]
This study develops a deep learning-based approach to automate inbound load plan adjustments for a large transportation and logistics company.
It addresses a critical challenge for the efficient and resilient planning of E-commerce operations in presence of increasing uncertainties.
arXiv Detail & Related papers (2024-11-26T15:13:13Z) - Optimal Execution with Reinforcement Learning [0.4972323953932129]
This study investigates the development of an optimal execution strategy through reinforcement learning.
We present a custom MDP formulation followed by the results of our methodology and benchmark the performance against standard execution strategies.
arXiv Detail & Related papers (2024-11-10T08:21:03Z) - Strategically Conservative Q-Learning [89.17906766703763]
offline reinforcement learning (RL) is a compelling paradigm to extend RL's practical utility.
The major difficulty in offline RL is mitigating the impact of approximation errors when encountering out-of-distribution (OOD) actions.
We propose a novel framework called Strategically Conservative Q-Learning (SCQ) that distinguishes between OOD data that is easy and hard to estimate.
arXiv Detail & Related papers (2024-06-06T22:09:46Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Optimizing Credit Limit Adjustments Under Adversarial Goals Using
Reinforcement Learning [42.303733194571905]
We seek to find and automatize an optimal credit card limit adjustment policy by employing reinforcement learning techniques.
Our research establishes a conceptual structure for applying reinforcement learning framework to credit limit adjustment.
arXiv Detail & Related papers (2023-06-27T16:10:36Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Knowledge-driven Active Learning [70.37119719069499]
Active learning strategies aim at minimizing the amount of labelled data required to train a Deep Learning model.
Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary.
Here we propose to take into consideration common domain-knowledge and enable non-expert users to train a model with fewer samples.
arXiv Detail & Related papers (2021-10-15T06:11:53Z) - Deep Portfolio Optimization via Distributional Prediction of Residual
Factors [3.9189409002585562]
We propose a novel method of constructing a portfolio based on predicting the distribution of a financial quantity called residual factors.
We demonstrate the efficacy of our method on U.S. and Japanese stock market data.
arXiv Detail & Related papers (2020-12-14T04:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.