論文の概要: Locally Adaptive One-Class Classifier Fusion with Dynamic $\ell$p-Norm Constraints for Robust Anomaly Detection
- arxiv url: http://arxiv.org/abs/2411.06406v2
- Date: Wed, 20 Nov 2024 13:39:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:11:06.837554
- Title: Locally Adaptive One-Class Classifier Fusion with Dynamic $\ell$p-Norm Constraints for Robust Anomaly Detection
- Title(参考訳): ロバスト異常検出のための動的$$\ell$p-norm制約付き局所適応型ワンクラス分類器フュージョン
- Authors: Sepehr Nourmohammadi, Arda Sarp Yenicesu, Shervin Rahimzadeh Arashloo, Ozgur S. Oguz,
- Abstract要約: 局所的なデータ特性に基づいて,融合重みを動的に調整するフレームワークを提案する。
本手法は,計算効率を大幅に向上させる内部点最適化手法を取り入れたものである。
計算効率を維持しながらローカルなデータパターンに適応できるフレームワークの能力は、リアルタイムアプリケーションに特に有用である。
- 参考スコア(独自算出の注目度): 17.93058599783703
- License:
- Abstract: This paper presents a novel approach to one-class classifier fusion through locally adaptive learning with dynamic $\ell$p-norm constraints. We introduce a framework that dynamically adjusts fusion weights based on local data characteristics, addressing fundamental challenges in ensemble-based anomaly detection. Our method incorporates an interior-point optimization technique that significantly improves computational efficiency compared to traditional Frank-Wolfe approaches, achieving up to 19-fold speed improvements in complex scenarios. The framework is extensively evaluated on standard UCI benchmark datasets and specialized temporal sequence datasets, demonstrating superior performance across diverse anomaly types. Statistical validation through Skillings-Mack tests confirms our method's significant advantages over existing approaches, with consistent top rankings in both pure and non-pure learning scenarios. The framework's ability to adapt to local data patterns while maintaining computational efficiency makes it particularly valuable for real-time applications where rapid and accurate anomaly detection is crucial.
- Abstract(参考訳): 本稿では,動的$\ell$p-norm制約を用いた局所適応学習による一級分類器融合への新しいアプローチを提案する。
本稿では,局所的なデータ特性に基づいて融合重みを動的に調整し,アンサンブルに基づく異常検出の基本的な課題に対処するフレームワークを提案する。
提案手法は,従来のフランク=ウルフ手法と比較して計算効率を著しく向上する内部点最適化手法を取り入れ,複雑なシナリオにおいて最大19倍の高速化を実現する。
このフレームワークは、標準のUCIベンチマークデータセットと専門の時間的シーケンスデータセットで広く評価されており、さまざまな異常型に対して優れたパフォーマンスを示している。
Skillings-Mackテストによる統計的検証は、我々の手法の既存のアプローチに対する大きな優位性を確認します。
計算効率を維持しながらローカルデータパターンに適応できるフレームワークの能力は、高速かつ正確な異常検出が不可欠であるリアルタイムアプリケーションに特に有用である。
関連論文リスト
- SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) は、ラベル付きソースドメインでトレーニングされたモデルを適用して、ラベルなしのターゲットドメインでデータ分散シフトをうまく実行する。
本稿では,DA手法の評価と,再重み付け,マッピング,部分空間アライメントなど,既存の浅層アルゴリズムの公平な評価を行うフレームワークを提案する。
本ベンチマークでは,現実的な検証の重要性を強調し,現実的なアプリケーションに対する実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T12:52:29Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
階層的フェデレートラーニング(HFL)は、車両ネットワークにおける敵または信頼できない車両の課題に直面している。
本研究では,動的車両選択とロバストな異常検出機構を統合した新しい枠組みを提案する。
提案アルゴリズムは,強烈な攻撃条件下においても顕著なレジリエンスを示す。
論文 参考訳(メタデータ) (2024-05-25T18:31:20Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
オンラインアルゴリズムは、大規模なバッチにデータを保存したり処理したりすることなく、リアルタイムで更新を計算できるため、大規模な学習環境で人気がある。
一定のステップサイズを使用すると、これらのアルゴリズムはデータやモデル特性などの問題パラメータのドリフトに適応し、適切な精度で最適解を追跡する能力を持つ。
定常仮定に基づく定常状態性能とランダムウォークモデルによるオンライン学習者の追跡性能の関連性を確立する。
論文 参考訳(メタデータ) (2020-04-04T14:16:27Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。