HidePrint: Hiding the Radio Fingerprint via Random Noise
- URL: http://arxiv.org/abs/2411.06417v1
- Date: Sun, 10 Nov 2024 10:45:35 GMT
- Title: HidePrint: Hiding the Radio Fingerprint via Random Noise
- Authors: Gabriele Oligeri, Savio Sciancalepore,
- Abstract summary: HidePrint hides the transmitter's fingerprint against an illegitimate eavesdropper by injecting controlled noise in the transmitted signal.
We introduce selective radio fingerprint disclosure, a new technique that allows the transmitter to disclose the radio fingerprint to only a subset of intended receivers.
- Score: 3.9901365062418312
- License:
- Abstract: Radio Frequency Fingerprinting (RFF) techniques allow a receiver to authenticate a transmitter by analyzing the physical layer of the radio spectrum. Although the vast majority of scientific contributions focus on improving the performance of RFF considering different parameters and scenarios, in this work, we consider RFF as an attack vector to identify and track a target device. We propose, implement, and evaluate HidePrint, a solution to prevent tracking through RFF without affecting the quality of the communication link between the transmitter and the receiver. HidePrint hides the transmitter's fingerprint against an illegitimate eavesdropper by injecting controlled noise in the transmitted signal. We evaluate our solution against state-of-the-art image-based RFF techniques considering different adversarial models, different communication links (wired and wireless), and different configurations. Our results show that the injection of a Gaussian noise pattern with a standard deviation of (at least) 0.02 prevents device fingerprinting in all the considered scenarios, thus making the performance of the identification process indistinguishable from the random guess while affecting the Signal-to-Noise Ratio (SNR) of the received signal by only 0.1 dB. Moreover, we introduce selective radio fingerprint disclosure, a new technique that allows the transmitter to disclose the radio fingerprint to only a subset of intended receivers. This technique allows the transmitter to regain anonymity, thus preventing identification and tracking while allowing authorized receivers to authenticate the transmitter without affecting the quality of the transmitted signal.
Related papers
- On the Reliability of Radio Frequency Fingerprinting [5.074726108522963]
Radio Frequency Fingerprinting (RFF) offers a unique method for identifying devices at the physical (PHY) layer based on their RF emissions.
We show that fingerprint mutations appear every time a new FPGA image is reloaded, i.e., when the SDR initiates a new communication.
arXiv Detail & Related papers (2024-08-17T12:06:21Z) - Preventing Radio Fingerprinting through Friendly Jamming [5.074726108522963]
Radio frequency fingerprinting enables a passive receiver to recognize and authenticate a transmitter without the need for cryptographic tools.
We examine the hostile usage of radio frequency fingerprinting, which facilitates the unauthorized tracking of wireless devices in the field by malicious entities.
We suggest a method to sanitize the transmitted signal of its fingerprint using a jammer, deployed on purpose to improve devices' anonymity on the channel.
arXiv Detail & Related papers (2024-07-11T09:01:46Z) - Erasing Radio Frequency Fingerprints via Active Adversarial Perturbation [19.88283575742985]
We consider a common RF fingerprinting scenario, where machine learning models are trained from pilot signal data for identification.
A novel adversarial attack solution is designed to generate proper perturbations, whereby the pilot signal can hide the hardware feature and misclassify the model.
Extensive experiment results demonstrate that the RF fingerprints can be effectively erased to protect the user privacy.
arXiv Detail & Related papers (2024-06-11T15:16:05Z) - Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks [13.857226688708353]
We evaluate the effectiveness of radio fingerprinting techniques under interference and jamming attacks.
We conclude that it takes a similar amount of jamming power in order to disrupt the fingerprint as it does to jam the message contents itself.
arXiv Detail & Related papers (2024-02-07T17:28:09Z) - Unsupervised Denoising for Signal-Dependent and Row-Correlated Imaging Noise [54.0185721303932]
We present the first fully unsupervised deep learning-based denoiser capable of handling imaging noise that is row-correlated.
Our approach uses a Variational Autoencoder with a specially designed autoregressive decoder.
Our method does not require a pre-trained noise model and can be trained from scratch using unpaired noisy data.
arXiv Detail & Related papers (2023-10-11T20:48:20Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content.
We introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs.
Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed.
arXiv Detail & Related papers (2023-05-31T17:00:31Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - DeFakePro: Decentralized DeepFake Attacks Detection using ENF
Authentication [66.2466055910145]
DeFakePro is a consensus mechanism-based Deepfake detection technique in online video conferencing tools.
The similarity in ENF signal fluctuations is utilized in the PoENF algorithm to authenticate the media broadcasted in conferencing tools.
arXiv Detail & Related papers (2022-07-22T01:22:11Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z) - Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi
via Obfuscating Radiometric Fingerprints [8.89054576694426]
The intrinsic hardware imperfection of WiFi chipsets manifests itself in the transmitted signal, leading to a unique radiometric fingerprint.
Recent works propose practical fingerprinting solutions that can be readily implemented in commercial-off-the-shelf devices.
We show analytically and experimentally that these solutions are highly vulnerable to impersonation attacks.
We propose RF-Veil, a radiometric fingerprinting solution that not only is robust against impersonation attacks but also protects user privacy.
arXiv Detail & Related papers (2020-11-25T11:10:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.