Open Set RF Fingerprinting Identification: A Joint Prediction and Siamese Comparison Framework
- URL: http://arxiv.org/abs/2501.15391v1
- Date: Sun, 26 Jan 2025 04:09:07 GMT
- Title: Open Set RF Fingerprinting Identification: A Joint Prediction and Siamese Comparison Framework
- Authors: Donghong Cai, Jiahao Shan, Ning Gao, Bingtao He, Yingyang Chen, Shi Jin, Pingzhi Fan,
- Abstract summary: We propose a joint radio frequency fingerprint prediction and siamese comparison (JRFFP-SC) framework for open set recognition.
The proposed JRFFP-SC framework eliminates inter-class interference and effectively addresses the challenges associated with open set identification.
- Score: 37.79439245394741
- License:
- Abstract: Radio Frequency Fingerprinting Identification (RFFI) is a lightweight physical layer identity authentication technique. It identifies the radio-frequency device by analyzing the signal feature differences caused by the inevitable minor hardware impairments. However, existing RFFI methods based on closed-set recognition struggle to detect unknown unauthorized devices in open environments. Moreover, the feature interference among legitimate devices can further compromise identification accuracy. In this paper, we propose a joint radio frequency fingerprint prediction and siamese comparison (JRFFP-SC) framework for open set recognition. Specifically, we first employ a radio frequency fingerprint prediction network to predict the most probable category result. Then a detailed comparison among the test sample's features with registered samples is performed in a siamese network. The proposed JRFFP-SC framework eliminates inter-class interference and effectively addresses the challenges associated with open set identification. The simulation results show that our proposed JRFFP-SC framework can achieve excellent rogue device detection and generalization capability for classifying devices.
Related papers
- HidePrint: Hiding the Radio Fingerprint via Random Noise [3.9901365062418312]
HidePrint hides the transmitter's fingerprint against an illegitimate eavesdropper by injecting controlled noise in the transmitted signal.
We introduce selective radio fingerprint disclosure, a new technique that allows the transmitter to disclose the radio fingerprint to only a subset of intended receivers.
arXiv Detail & Related papers (2024-11-10T10:45:35Z) - On the Reliability of Radio Frequency Fingerprinting [5.074726108522963]
Radio Frequency Fingerprinting (RFF) offers a unique method for identifying devices at the physical (PHY) layer based on their RF emissions.
We show that fingerprint mutations appear every time a new FPGA image is reloaded, i.e., when the SDR initiates a new communication.
arXiv Detail & Related papers (2024-08-17T12:06:21Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
arXiv Detail & Related papers (2024-07-23T15:07:52Z) - Erasing Radio Frequency Fingerprints via Active Adversarial Perturbation [19.88283575742985]
We consider a common RF fingerprinting scenario, where machine learning models are trained from pilot signal data for identification.
A novel adversarial attack solution is designed to generate proper perturbations, whereby the pilot signal can hide the hardware feature and misclassify the model.
Extensive experiment results demonstrate that the RF fingerprints can be effectively erased to protect the user privacy.
arXiv Detail & Related papers (2024-06-11T15:16:05Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain.
We propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF)
Experiment results on several public face forgery datasets demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T08:58:49Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - DeFakePro: Decentralized DeepFake Attacks Detection using ENF
Authentication [66.2466055910145]
DeFakePro is a consensus mechanism-based Deepfake detection technique in online video conferencing tools.
The similarity in ENF signal fluctuations is utilized in the PoENF algorithm to authenticate the media broadcasted in conferencing tools.
arXiv Detail & Related papers (2022-07-22T01:22:11Z) - Few-Shot Specific Emitter Identification via Deep Metric Ensemble
Learning [26.581059299453663]
We propose a novel FS-SEI for aircraft identification via automatic dependent surveillance-broadcast (ADS-B) signals.
Specifically, the proposed method consists of feature embedding and classification.
Simulation results show that if the number of samples per category is more than 5, the average accuracy of our proposed method is higher than 98%.
arXiv Detail & Related papers (2022-07-14T01:09:22Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z) - Device Authentication Codes based on RF Fingerprinting using Deep
Learning [2.980018103007841]
Device Authentication Code (DAC) is a novel method for authenticating IoT devices with wireless interface by exploiting their radio frequency (RF) signatures.
We show that DAC is able to prevent device impersonation by extracting salient features that are unique to any wireless device of interest.
arXiv Detail & Related papers (2020-04-19T01:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.