Local Implicit Wavelet Transformer for Arbitrary-Scale Super-Resolution
- URL: http://arxiv.org/abs/2411.06442v1
- Date: Sun, 10 Nov 2024 12:21:14 GMT
- Title: Local Implicit Wavelet Transformer for Arbitrary-Scale Super-Resolution
- Authors: Minghong Duan, Linhao Qu, Shaolei Liu, Manning Wang,
- Abstract summary: Implicit neural representations have recently demonstrated promising potential in arbitrary-scale Super-Resolution (SR) of images.
Most existing methods predict the pixel in the SR image based on the queried coordinate and ensemble nearby features.
We propose the Local Implicit Wavelet Transformer (LIWT) to enhance the restoration of high-frequency texture details.
- Score: 15.610136214020947
- License:
- Abstract: Implicit neural representations have recently demonstrated promising potential in arbitrary-scale Super-Resolution (SR) of images. Most existing methods predict the pixel in the SR image based on the queried coordinate and ensemble nearby features, overlooking the importance of incorporating high-frequency prior information in images, which results in limited performance in reconstructing high-frequency texture details in images. To address this issue, we propose the Local Implicit Wavelet Transformer (LIWT) to enhance the restoration of high-frequency texture details. Specifically, we decompose the features extracted by an encoder into four sub-bands containing different frequency information using Discrete Wavelet Transform (DWT). We then introduce the Wavelet Enhanced Residual Module (WERM) to transform these four sub-bands into high-frequency priors, followed by utilizing the Wavelet Mutual Projected Fusion (WMPF) and the Wavelet-aware Implicit Attention (WIA) to fully exploit the high-frequency prior information for recovering high-frequency details in images. We conducted extensive experiments on benchmark datasets to validate the effectiveness of LIWT. Both qualitative and quantitative results demonstrate that LIWT achieves promising performance in arbitrary-scale SR tasks, outperforming other state-of-the-art methods. The code is available at https://github.com/dmhdmhdmh/LIWT.
Related papers
- Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
We propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring.
To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions.
We demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics.
arXiv Detail & Related papers (2024-11-11T11:49:18Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - Training Transformer Models by Wavelet Losses Improves Quantitative and Visual Performance in Single Image Super-Resolution [6.367865391518726]
Transformer-based models have achieved remarkable results in low-level vision tasks including image super-resolution (SR)
To activate more input pixels globally, hybrid attention models have been proposed.
We employ wavelet losses to train Transformer models to improve quantitative and subjective performance.
arXiv Detail & Related papers (2024-04-17T11:25:19Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Contextual Learning in Fourier Complex Field for VHR Remote Sensing
Images [64.84260544255477]
transformer-based models demonstrated outstanding potential for learning high-order contextual relationships from natural images with general resolution (224x224 pixels)
We propose a complex self-attention (CSA) mechanism to model the high-order contextual information with less than half computations of naive SA.
By stacking various layers of CSA blocks, we propose the Fourier Complex Transformer (FCT) model to learn global contextual information from VHR aerial images.
arXiv Detail & Related papers (2022-10-28T08:13:33Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
Single image super-resolution(SISR) is an ill-posed problem that aims to obtain high-resolution (HR) output from low-resolution (LR) input.
Despite the high peak signal-to-noise ratios(PSNR) results, it is difficult to determine whether the model correctly adds desired high-frequency details.
We propose FreqNet, an intuitive pipeline from the frequency domain perspective, to solve this problem.
arXiv Detail & Related papers (2021-11-21T11:49:12Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - TWIST-GAN: Towards Wavelet Transform and Transferred GAN for
Spatio-Temporal Single Image Super Resolution [4.622977798361014]
Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution.
Deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR)
arXiv Detail & Related papers (2021-04-20T22:12:38Z) - Wavelet Integrated CNNs for Noise-Robust Image Classification [51.18193090255933]
We enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT)
WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.
arXiv Detail & Related papers (2020-05-07T09:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.