Multi-scale Frequency Enhancement Network for Blind Image Deblurring
- URL: http://arxiv.org/abs/2411.06893v1
- Date: Mon, 11 Nov 2024 11:49:18 GMT
- Title: Multi-scale Frequency Enhancement Network for Blind Image Deblurring
- Authors: Yawen Xiang, Heng Zhou, Chengyang Li, Zhongbo Li, Yongqiang Xie,
- Abstract summary: We propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring.
To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions.
We demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics.
- Score: 7.198959621445282
- License:
- Abstract: Image deblurring is an essential image preprocessing technique, aiming to recover clear and detailed images form blurry ones. However, existing algorithms often fail to effectively integrate multi-scale feature extraction with frequency enhancement, limiting their ability to reconstruct fine textures. Additionally, non-uniform blur in images also restricts the effectiveness of image restoration. To address these issues, we propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring. To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions, which provides rich target features for deblurring. We propose a frequency enhanced blur perception module (FEBP) that employs wavelet transforms to extract high-frequency details and utilizes multi-strip pooling to perceive non-uniform blur, combining multi-scale information with frequency enhancement to improve the restoration of image texture details. Experimental results on the GoPro and HIDE datasets demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics. Furthermore, in downstream object detection tasks, the proposed blind image deblurring algorithm significantly improves detection accuracy, further validating its effectiveness androbustness in the field of image deblurring.
Related papers
- WTDUN: Wavelet Tree-Structured Sampling and Deep Unfolding Network for Image Compressed Sensing [51.94493817128006]
We propose a novel wavelet-domain deep unfolding framework named WTDUN, which operates directly on the multi-scale wavelet subbands.
Our method utilizes the intrinsic sparsity and multi-scale structure of wavelet coefficients to achieve a tree-structured sampling and reconstruction.
arXiv Detail & Related papers (2024-11-25T12:31:03Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion [28.049668999586583]
We propose a novel and robust low-light image enhancement method via CLIP-Fourier Guided Wavelet Diffusion, abbreviated as CFWD.
CFWD leverages multimodal visual-language information in the frequency domain space created by multiple wavelet transforms to guide the enhancement process.
Our approach outperforms existing state-of-the-art methods, achieving significant progress in image quality and noise suppression.
arXiv Detail & Related papers (2024-01-08T10:08:48Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
We propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images.
Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.
arXiv Detail & Related papers (2023-04-13T17:54:00Z) - Multi-scale frequency separation network for image deblurring [10.511076996096117]
We present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring.
MSFS-Net captures the low and high-frequency information of image at multiple scales.
Experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-06-01T23:48:35Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
In most real-world images, blur is caused by different factors, e.g., motion and defocus.
We construct a new large-scale multi-cause image deblurring dataset (called MC-Blur)
Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios.
arXiv Detail & Related papers (2021-12-01T02:10:42Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.