Superpixel Segmentation: A Long-Lasting Ill-Posed Problem
- URL: http://arxiv.org/abs/2411.06478v1
- Date: Sun, 10 Nov 2024 14:31:56 GMT
- Title: Superpixel Segmentation: A Long-Lasting Ill-Posed Problem
- Authors: Rémi Giraud, Michaël Clément,
- Abstract summary: We show that superpixel segmentation is fundamentally an ill-posed problem, due to the implicit regularity constraint on the shape and size of superpixels.
We show that we can achieve competitive results using a recent architecture like the Segment Anything Model (SAM) without dedicated training for the superpixel segmentation task.
- Score: 1.104960878651584
- License:
- Abstract: For many years, image over-segmentation into superpixels has been essential to computer vision pipelines, by creating homogeneous and identifiable regions of similar sizes. Such constrained segmentation problem would require a clear definition and specific evaluation criteria. However, the validation framework for superpixel methods, typically viewed as standard object segmentation, has rarely been thoroughly studied. In this work, we first take a step back to show that superpixel segmentation is fundamentally an ill-posed problem, due to the implicit regularity constraint on the shape and size of superpixels. We also demonstrate through a novel comprehensive study that the literature suffers from only evaluating certain aspects, sometimes incorrectly and with inappropriate metrics. Concurrently, recent deep learning-based superpixel methods mainly focus on the object segmentation task at the expense of regularity. In this ill-posed context, we show that we can achieve competitive results using a recent architecture like the Segment Anything Model (SAM), without dedicated training for the superpixel segmentation task. This leads to rethinking superpixel segmentation and the necessary properties depending on the targeted downstream task.
Related papers
- Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
We present a pixel-level clustering framework for segmenting images into regions without using ground truth annotations.
We also propose a training strategy that utilizes intra-consistency within each superpixel, inter-similarity/dissimilarity between neighboring superpixels, and structural similarity between images.
arXiv Detail & Related papers (2023-10-24T23:06:29Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
We propose a novel superpixel framework, named Superpixels through Iterative CLEarcutting (SICLE)
SICLE exploits object information being able to generate a multiscale segmentation on-the-fly.
It generalizes recent superpixel methods, surpassing them and other state-of-the-art approaches in efficiency and effectiveness according to multiple delineation metrics.
arXiv Detail & Related papers (2022-04-07T15:59:38Z) - PNM: Pixel Null Model for General Image Segmentation [17.971090313814447]
We present a prior model that weights each pixel according to its probability of being correctly classified by a random segmenter.
Experiments on semantic, instance, and panoptic segmentation tasks over three datasets confirm that PNM consistently improves the segmentation quality.
We propose a new metric, textitPNM IoU, which perceives the boundary sharpness and better reflects the model segmentation performance in error-prone regions.
arXiv Detail & Related papers (2022-03-13T15:17:41Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Deep Superpixel Cut for Unsupervised Image Segmentation [0.9281671380673306]
We propose a deep unsupervised method for image segmentation, which contains the following two stages.
First, a Superpixelwise Autoencoder (SuperAE) is designed to learn the deep embedding and reconstruct a smoothed image, then the smoothed image is passed to generate superpixels.
Second, we present a novel clustering algorithm called Deep Superpixel Cut (DSC), which measures the deep similarity between superpixels and formulates image segmentation as a soft partitioning problem.
arXiv Detail & Related papers (2021-03-10T13:07:41Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
We introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings.
This marks a large deviation from existing works that relied on proxy tasks or end-to-end clustering.
In particular, when fine-tuning the learned representations using just 1% of labeled examples on PASCAL, we outperform supervised ImageNet pre-training by 7.1% mIoU.
arXiv Detail & Related papers (2021-02-11T18:54:47Z) - Exploring Cross-Image Pixel Contrast for Semantic Segmentation [130.22216825377618]
We propose a pixel-wise contrastive framework for semantic segmentation in the fully supervised setting.
The core idea is to enforce pixel embeddings belonging to a same semantic class to be more similar than embeddings from different classes.
Our method can be effortlessly incorporated into existing segmentation frameworks without extra overhead during testing.
arXiv Detail & Related papers (2021-01-28T11:35:32Z) - Superpixel-based Refinement for Object Proposal Generation [3.1981440103815717]
We introduce a new superpixel-based refinement approach on top of the state-of-the-art object proposal system AttentionMask.
Our experiments show an improvement of up to 26.4% in terms of average recall compared to original AttentionMask.
arXiv Detail & Related papers (2021-01-12T16:06:48Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
Given a pretrained segmentation model and few images containing novel classes, our goal is to learn to segment novel classes while retaining the ability to segment previously seen ones.
We show how the main problems of end-to-end training in this scenario are.
i) the drift of the batch-normalization statistics toward novel classes that we can fix with batch renormalization and.
ii) the forgetting of old classes, that we can fix with regularization strategies.
arXiv Detail & Related papers (2020-11-30T20:45:56Z) - AinnoSeg: Panoramic Segmentation with High Perfomance [4.867465475957119]
Current panoramic segmentation algorithms are more concerned with context semantics, but the details of image are not processed enough.
Aiming to address these issues, this paper presents some useful tricks.
All these operations named AinnoSeg, AinnoSeg can achieve state-of-art performance on the well-known dataset ADE20K.
arXiv Detail & Related papers (2020-07-21T04:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.