In-Context Learning for Preserving Patient Privacy: A Framework for Synthesizing Realistic Patient Portal Messages
- URL: http://arxiv.org/abs/2411.06549v1
- Date: Sun, 10 Nov 2024 18:06:55 GMT
- Title: In-Context Learning for Preserving Patient Privacy: A Framework for Synthesizing Realistic Patient Portal Messages
- Authors: Joseph Gatto, Parker Seegmiller, Timothy E. Burdick, Sarah Masud Preum,
- Abstract summary: Since the COVID-19 pandemic, clinicians have seen a large and sustained influx in patient portal messages.
This study introduces an LLM-powered framework for realistic patient portal message generation.
- Score: 0.9112162560071937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the COVID-19 pandemic, clinicians have seen a large and sustained influx in patient portal messages, significantly contributing to clinician burnout. To the best of our knowledge, there are no large-scale public patient portal messages corpora researchers can use to build tools to optimize clinician portal workflows. Informed by our ongoing work with a regional hospital, this study introduces an LLM-powered framework for configurable and realistic patient portal message generation. Our approach leverages few-shot grounded text generation, requiring only a small number of de-identified patient portal messages to help LLMs better match the true style and tone of real data. Clinical experts in our team deem this framework as HIPAA-friendly, unlike existing privacy-preserving approaches to synthetic text generation which cannot guarantee all sensitive attributes will be protected. Through extensive quantitative and human evaluation, we show that our framework produces data of higher quality than comparable generation methods as well as all related datasets. We believe this work provides a path forward for (i) the release of large-scale synthetic patient message datasets that are stylistically similar to ground-truth samples and (ii) HIPAA-friendly data generation which requires minimal human de-identification efforts.
Related papers
- A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs [1.1645633237702129]
We evaluate the current state of commercial Large Language Models for generating synthetic data.
Our main finding is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases.
arXiv Detail & Related papers (2025-04-20T15:37:05Z) - A text-to-tabular approach to generate synthetic patient data using LLMs [0.3628457733531155]
We propose an approach to generate synthetic patient data that does not require access to the original data.
We leverage prior medical knowledge and in-context learning capabilities of large language models to generate realistic patient data.
arXiv Detail & Related papers (2024-12-06T16:10:40Z) - Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
This study assesses the capability of the Llama 2 LLM to create synthetic medical records that accurately reflect real patient information.
We focus on generating synthetic narratives for the History of Present Illness section, utilising data from the MIMIC-IV dataset for comparison.
Our findings suggest that this chain-of-thought prompted approach allows the zero-shot model to achieve results on par with those of fine-tuned models, based on Rouge metrics evaluation.
arXiv Detail & Related papers (2024-03-13T16:17:09Z) - NOTE: Notable generation Of patient Text summaries through Efficient
approach based on direct preference optimization [0.0]
"NOTE" stands for "Notable generation Of patient Text summaries through an Efficient approach based on direct preference optimization"
Patient events are sequentially combined and used to generate a discharge summary for each hospitalization.
Note can be utilized to generate various summaries not only discharge summaries but also throughout a patient's journey.
arXiv Detail & Related papers (2024-02-19T06:43:25Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
We introduce a new task of automatically generating lay definitions, aiming to simplify medical terms into patient-friendly lay language.
We first created the dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions.
We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality.
arXiv Detail & Related papers (2023-12-24T23:01:00Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
We propose an approach that combines Large Language Models (LLMs) with human expertise to create an efficient method for generating ground truth labels for medical text annotation.
We rigorously evaluate our method on a medical information extraction task, demonstrating that our approach not only substantially cuts down on human intervention but also maintains high accuracy.
arXiv Detail & Related papers (2023-12-04T19:26:13Z) - Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data
Generation with Large Language Models [48.07083163501746]
Clinical natural language processing requires methods that can address domain-specific challenges.
We propose an innovative, resource-efficient approach, ClinGen, which infuses knowledge into the process.
Our empirical study across 7 clinical NLP tasks and 16 datasets reveals that ClinGen consistently enhances performance across various tasks.
arXiv Detail & Related papers (2023-11-01T04:37:28Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
We investigate the potential of OpenAI's ChatGPT to aid in clinical text mining.
We propose a new training paradigm that involves generating a vast quantity of high-quality synthetic data.
Our method has resulted in significant improvements in the performance of downstream tasks.
arXiv Detail & Related papers (2023-03-08T03:56:31Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.