Combining Entangled and Non-Entangled Based Quantum Key Distribution Protocol With GHZ State
- URL: http://arxiv.org/abs/2411.06586v1
- Date: Sun, 10 Nov 2024 20:24:36 GMT
- Title: Combining Entangled and Non-Entangled Based Quantum Key Distribution Protocol With GHZ State
- Authors: Arman Sykot, Mohammad Hasibur Rahman, Rifat Tasnim Anannya, Khan Shariya Hasan Upoma, M. R. C. Mahdy,
- Abstract summary: Quantum Key Distribution,QKD, protocol combines entanglement based and non entanglement based approaches to optimize security and the number of generated keys.
We introduce a three particle GHZ state method with the two state B92 protocol, using a quantum superposition state to probabilistically switch between them.
- Score: 0.0
- License:
- Abstract: This paper presents a novel hybrid Quantum Key Distribution ,QKD, protocol that combines entanglement based and non entanglement based approaches to optimize security and the number of generated keys. We introduce a dynamic system that integrates a three particle GHZ state method with the two state B92 protocol, using a quantum superposition state to probabilistically switch between them. The GHZ state component leverages strong three particle entanglement correlations for enhanced security, while the B92 component offers simplicity and potentially higher key generation rates. Implemented and simulated using Qiskit, our approach demonstrates higher number of generated keys compared to standalone protocols while maintaining robust security. We present a comprehensive analysis of the security properties and performance characteristics of the proposed protocol. The results show that this combined method effectively balances the trade offs inherent in QKD systems, offering a flexible framework adaptable to varying channel conditions and security requirements.This research contributes to ongoing efforts to make QKD more practical and efficient, potentially advancing the development of large scale, secured quantum networks.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Experimental coherent-state quantum secret sharing with finite pulses [15.261941167557849]
Quantum secret sharing (QSS) plays a significant role in quantum communication.
We propose a three-user QSS protocol based on phase-encoding technology.
Our protocol achieves secure key rates ranging from 432 to 192 bps.
arXiv Detail & Related papers (2024-10-08T09:01:06Z) - Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Efficient source-independent quantum conference key agreement [25.617190829449893]
Quantum conference key agreement (QCKA) enables the unconditional secure distribution of conference keys among multiple participants.
We propose a source-independent QCKA scheme utilizing the post-matching method.
We introduce an equivalent distributing virtual multi-photon entanglement protocol for providing the unconditional security proof.
arXiv Detail & Related papers (2024-06-25T04:24:06Z) - A Secure Quantum Key Distribution Protocol Using Two-Particle Transmission [0.0]
Unextendible Product Bases (UPBs) hold promise in quantum cryptography due to their inherent indistinguishability.
This work introduces a protocol utilizing UPBs to establish quantum keys between distant parties.
arXiv Detail & Related papers (2024-03-20T14:33:17Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Free Space Continuous Variable Quantum Key Distribution with Discrete
Phases [1.7891363899302908]
Continuous variable (CV) QKD offers many advantages over discrete variable (DV) QKD.
We demonstrate a discrete modulated CVQKD protocol in the free space which is robust against polarization drift.
arXiv Detail & Related papers (2023-05-22T15:25:54Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.