Learning from Different Samples: A Source-free Framework for Semi-supervised Domain Adaptation
- URL: http://arxiv.org/abs/2411.06665v1
- Date: Mon, 11 Nov 2024 02:09:32 GMT
- Title: Learning from Different Samples: A Source-free Framework for Semi-supervised Domain Adaptation
- Authors: Xinyang Huang, Chuang Zhu, Bowen Zhang, Shanghang Zhang,
- Abstract summary: This paper focuses on designing a framework to use different strategies for comprehensively mining different target samples.
We propose a novel source-free framework (SOUF) to achieve semi-supervised fine-tuning of the source pre-trained model on the target domain.
- Score: 20.172605920901777
- License:
- Abstract: Semi-supervised domain adaptation (SSDA) has been widely studied due to its ability to utilize a few labeled target data to improve the generalization ability of the model. However, existing methods only consider designing certain strategies for target samples to adapt, ignoring the exploration of customized learning for different target samples. When the model encounters complex target distribution, existing methods will perform limited due to the inability to clearly and comprehensively learn the knowledge of multiple types of target samples. To fill this gap, this paper focuses on designing a framework to use different strategies for comprehensively mining different target samples. We propose a novel source-free framework (SOUF) to achieve semi-supervised fine-tuning of the source pre-trained model on the target domain. Different from existing SSDA methods, SOUF decouples SSDA from the perspectives of different target samples, specifically designing robust learning techniques for unlabeled, reliably labeled, and noisy pseudo-labeled target samples. For unlabeled target samples, probability-based weighted contrastive learning (PWC) helps the model learn more discriminative feature representations. To mine the latent knowledge of labeled target samples, reliability-based mixup contrastive learning (RMC) learns complex knowledge from the constructed reliable sample set. Finally, predictive regularization learning (PR) further mitigates the misleading effect of noisy pseudo-labeled samples on the model. Extensive experiments on benchmark datasets demonstrate the superiority of our framework over state-of-the-art methods.
Related papers
- Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Universal Semi-supervised Model Adaptation via Collaborative Consistency
Training [92.52892510093037]
We introduce a realistic and challenging domain adaptation problem called Universal Semi-supervised Model Adaptation (USMA)
We propose a collaborative consistency training framework that regularizes the prediction consistency between two models.
Experimental results demonstrate the effectiveness of our method on several benchmark datasets.
arXiv Detail & Related papers (2023-07-07T08:19:40Z) - Towards Realizing the Value of Labeled Target Samples: a Two-Stage
Approach for Semi-Supervised Domain Adaptation [21.004477294264998]
Semi-Supervised Domain Adaptation (SSDA) is a recently emerging research topic that extends from the widely-investigated Unsupervised Domain Adaptation (UDA)
We propose to decouple SSDA as an UDA problem and a semi-supervised learning problem where we first learn an UDA model using labeled source and unlabeled target samples.
By utilizing the labeled source samples and target samples separately, the bias problem can be well mitigated.
arXiv Detail & Related papers (2023-04-21T06:13:23Z) - A Global Model Approach to Robust Few-Shot SAR Automatic Target
Recognition [6.260916845720537]
It may not always be possible to collect hundreds of labeled samples per class for training deep learning-based SAR Automatic Target Recognition (ATR) models.
This work specifically tackles the few-shot SAR ATR problem, where only a handful of labeled samples may be available to support the task of interest.
arXiv Detail & Related papers (2023-03-20T00:24:05Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - POODLE: Improving Few-shot Learning via Penalizing Out-of-Distribution
Samples [19.311470287767385]
We propose to use out-of-distribution samples, i.e., unlabeled samples coming from outside the target classes, to improve few-shot learning.
Our approach is simple to implement, agnostic to feature extractors, lightweight without any additional cost for pre-training, and applicable to both inductive and transductive settings.
arXiv Detail & Related papers (2022-06-08T18:59:21Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - Robust Federated Learning: The Case of Affine Distribution Shifts [41.27887358989414]
We develop a robust federated learning algorithm that achieves satisfactory performance against distribution shifts in users' samples.
We show that an affine distribution shift indeed suffices to significantly decrease the performance of the learnt classifier in a new test user.
arXiv Detail & Related papers (2020-06-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.