Prompt Tuning Vision Language Models with Margin Regularizer for Few-Shot Learning under Distribution Shifts
- URL: http://arxiv.org/abs/2505.15506v1
- Date: Wed, 21 May 2025 13:26:56 GMT
- Title: Prompt Tuning Vision Language Models with Margin Regularizer for Few-Shot Learning under Distribution Shifts
- Authors: Debarshi Brahma, Anuska Roy, Soma Biswas,
- Abstract summary: We analyze whether vision-language foundation models can be adapted to target datasets with very different distributions and classes.<n>We propose a novel prompt-tuning method, PromptMargin, for adapting such large-scale VLMs directly on the few target samples.<n>PromptMargin effectively tunes the text as well as visual prompts for this task, and has two main modules.
- Score: 13.21626568246313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Vision-Language foundation models like CLIP and ALIGN, which are pre-trained on large-scale data have shown remarkable zero-shot generalization to diverse datasets with different classes and even domains. In this work, we take a step further and analyze whether these models can be adapted to target datasets having very different distributions and classes compared to what these models have been trained on, using only a few labeled examples from the target dataset. In such scenarios, finetuning large pretrained models is challenging due to problems of overfitting as well as loss of generalization, and has not been well explored in prior literature. Since, the pre-training data of such models are unavailable, it is difficult to comprehend the performance on various downstream datasets. First, we try to answer the question: Given a target dataset with a few labelled examples, can we estimate whether further fine-tuning can enhance the performance compared to zero-shot evaluation? by analyzing the common vision-language embedding space. Based on the analysis, we propose a novel prompt-tuning method, PromptMargin for adapting such large-scale VLMs directly on the few target samples. PromptMargin effectively tunes the text as well as visual prompts for this task, and has two main modules: 1) Firstly, we use a selective augmentation strategy to complement the few training samples in each task; 2) Additionally, to ensure robust training in the presence of unfamiliar class names, we increase the inter-class margin for improved class discrimination using a novel Multimodal Margin Regularizer. Extensive experiments and analysis across fifteen target benchmark datasets, with varying degrees of distribution shifts from natural images, shows the effectiveness of the proposed framework over the existing state-of-the-art approaches applied to this setting. github.com/debarshigit/PromptMargin.
Related papers
- LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training [2.762397703396293]
Loss Prediction Loss with Gradient Norm (LPLgrad) is designed to quantify model uncertainty effectively and improve the accuracy of image classification tasks.
LPLgrad operates in two distinct phases: (i) em Training Phase aims to predict the loss for input features by jointly training a main model and an auxiliary model.
This dual-model approach enhances the ability to extract complex input features and learn intrinsic patterns from the data effectively.
arXiv Detail & Related papers (2024-11-20T18:12:59Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Improve Meta-learning for Few-Shot Text Classification with All You Can Acquire from the Tasks [10.556477506959888]
Existing methods often encounter difficulties in drawing accurate class prototypes from support set samples.
Recent approaches attempt to incorporate external knowledge or pre-trained language models to augment data, but this requires additional resources.
We propose a novel solution by adequately leveraging the information within the task itself.
arXiv Detail & Related papers (2024-10-14T12:47:11Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - The Trade-off between Universality and Label Efficiency of
Representations from Contrastive Learning [32.15608637930748]
We show that there exists a trade-off between the two desiderata so that one may not be able to achieve both simultaneously.
We provide analysis using a theoretical data model and show that, while more diverse pre-training data result in more diverse features for different tasks, it puts less emphasis on task-specific features.
arXiv Detail & Related papers (2023-02-28T22:14:33Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
We study the few-shot learning problem, where a model learns to recognize new objects with extremely few labeled data per category.
We propose a simple approach to exploit unlabeled data accompanying the few-shot task for improving few-shot performance.
arXiv Detail & Related papers (2021-09-07T02:19:01Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.