論文の概要: United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2411.06703v1
- Date: Mon, 11 Nov 2024 04:12:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:13.372304
- Title: United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images
- Title(参考訳): 光リモートセンシング画像における有向物体検出のためのUnited Domain Cognition Network
- Authors: Yanguang Sun, Jian Yang, Lei Luo,
- Abstract要約: 周波数領域と空間領域のグローバルローカル情報を共同で探索する新しい統一ドメイン認知ネットワーク(UDCNet)を提案する。
実験結果から提案したUDCNetが24種類の最先端モデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 21.76732661032257
- License:
- Abstract: Recently, deep learning-based salient object detection (SOD) in optical remote sensing images (ORSIs) have achieved significant breakthroughs. We observe that existing ORSIs-SOD methods consistently center around optimizing pixel features in the spatial domain, progressively distinguishing between backgrounds and objects. However, pixel information represents local attributes, which are often correlated with their surrounding context. Even with strategies expanding the local region, spatial features remain biased towards local characteristics, lacking the ability of global perception. To address this problem, we introduce the Fourier transform that generate global frequency features and achieve an image-size receptive field. To be specific, we propose a novel United Domain Cognition Network (UDCNet) to jointly explore the global-local information in the frequency and spatial domains. Technically, we first design a frequency-spatial domain transformer block that mutually amalgamates the complementary local spatial and global frequency features to strength the capability of initial input features. Furthermore, a dense semantic excavation module is constructed to capture higher-level semantic for guiding the positioning of remote sensing objects. Finally, we devise a dual-branch joint optimization decoder that applies the saliency and edge branches to generate high-quality representations for predicting salient objects. Experimental results demonstrate the superiority of the proposed UDCNet method over 24 state-of-the-art models, through extensive quantitative and qualitative comparisons in three widely-used ORSIs-SOD datasets. The source code is available at: \href{https://github.com/CSYSI/UDCNet}{\color{blue} https://github.com/CSYSI/UDCNet}.
- Abstract(参考訳): 近年,光学式リモートセンシング画像(ORSI)における深層学習に基づくサルエント物体検出(SOD)が飛躍的な進歩を遂げている。
既存のORSIs-SOD法は,空間領域における画素特徴の最適化を中心に,背景と対象を段階的に区別する。
しかし、ピクセル情報は、しばしば周囲のコンテキストと相関する局所的な属性を表す。
地域を拡大する戦略であっても、空間的特徴は局所的な特徴に偏り、グローバルな知覚能力が欠如している。
この問題に対処するために、大域的な周波数特徴を生成し、画像サイズの受容場を実現するフーリエ変換を導入する。
具体的には、周波数領域と空間領域におけるグローバルな情報とを共同で探索する新しい統一ドメイン認知ネットワーク(UDCNet)を提案する。
技術的には、まず周波数空間変換器ブロックを設計し、相互に相補的な局所的な空間的特徴と大域的な周波数的特徴を調和させ、初期入力機能の能力を高める。
さらに、リモートセンシングオブジェクトの位置決めを導くための高レベルなセマンティックをキャプチャするために、密集したセマンティック掘削モジュールを構築した。
最後に,両ブランチ共同最適化デコーダを考案し,有意なオブジェクトを予測するための高品質な表現を生成する。
実験により,広範に使用されている3つのORSIs-SODデータセットの定量的および定性的比較により,24種類の最先端モデルに対するUDCNet手法の優位性を実証した。
ソースコードは以下の通りである。 \href{https://github.com/CSYSI/UDCNet}{\color{blue} https://github.com/CSYSI/UDCNet}。
関連論文リスト
- Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
既存の手法では、複雑な設計で空間的特徴の識別能力を最大化することにより、画素類似性の影響を減らそうとしている。
本稿では,周波数領域と空間領域の表現を共同で探索し,周波数空間の絡み合い学習(FSEL)手法を提案する。
我々の実験は、広く使われている3つのデータセットにおける包括的量的および質的比較を通じて、21以上の最先端手法によるFSELの優位性を実証した。
論文 参考訳(メタデータ) (2024-09-03T07:58:47Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
光リモートセンシング画像(ORSI-SOD)のためのGlobal extract Local Exploration Network(GeleNet)を提案する。
具体的には、GeleNetはまずトランスフォーマーバックボーンを採用し、グローバルな長距離依存関係を持つ4レベルの機能埋め込みを生成する。
3つの公開データセットに関する大規模な実験は、提案されたGeleNetが関連する最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-09-15T07:14:43Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - DQnet: Cross-Model Detail Querying for Camouflaged Object Detection [54.82390534024954]
カモフラージュされた物体検出のための畳み込みニューラルネットワーク(CNN)は、完全な対象範囲を無視しながら局所的な識別領域を活性化する傾向がある。
本稿では,CNNの内在的特性から部分的活性化が引き起こされることを論じる。
完全なオブジェクト範囲を活性化できる特徴マップを得るために,クロスモデル詳細クエリネットワーク(DQnet)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-16T06:23:58Z) - Position-Aware Relation Learning for RGB-Thermal Salient Object
Detection [3.115635707192086]
我々は,Swin Transformerに基づくRGB-T SODのための位置認識型関係学習ネットワーク(PRLNet)を提案する。
PRLNetは、クラス内コンパクト性とクラス間分離を強化するために、ピクセル間の距離と方向の関係を探索する。
さらに、RGB-T SODのマルチスペクトル特徴表現を強化するために、純粋なトランスフォーマーエンコーダデコーダネットワークを構成する。
論文 参考訳(メタデータ) (2022-09-21T07:34:30Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
リモートセンシングオブジェクト検出のための周波数対応特徴ピラミッドフレームワーク(FFPF)を提案する。
F-ResNetは、周波数領域の畳み込みをバックボーンの各ステージに差し込み、スペクトルコンテキスト情報を知覚するために提案される。
BSFPNは、双方向サンプリング戦略とスキップ接続を用いて、異なるスケールの物体の特徴の関連をより良くモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-09-01T15:50:58Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Remote Sensing Cross-Modal Text-Image Retrieval Based on Global and
Local Information [15.32353270625554]
リモートセンシング(RS)画像の高速かつ柔軟な情報抽出を可能にするため,クロスモーダルリモートセンシングテキスト画像検索(RSCTIR)は近年,緊急な研究ホットスポットとなっている。
まず,グローバル・ローカル情報(GaLR)に基づく新しいRSCTIRフレームワークを提案し,多レベル情報ダイナミックフュージョン(MIDF)モジュールを設計し,異なるレベルの機能を効果的に統合する。
公開データセットの実験は、RSCTIRタスク上でのGaLR法の最先端性能を強く実証している。
論文 参考訳(メタデータ) (2022-04-21T03:18:09Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
特徴抽出のプロセスを改善するために,新しいコンテキスト集約ネットワーク(CATNet)を提案する。
提案モデルは,高密度特徴ピラミッドネットワーク(DenseFPN),空間コンテキストピラミッド(SCP),階層的関心抽出器(HRoIE)の3つの軽量プラグアンドプレイモジュールを利用する。
論文 参考訳(メタデータ) (2021-11-22T08:55:25Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
GAN(Generative Adversarial Network)のための代替U-Netベースの識別器アーキテクチャを提案する。
提案アーキテクチャにより,合成画像のグローバルコヒーレンスを維持しつつ,画素単位の詳細なフィードバックを生成元に提供することができる。
斬新な判別器は、標準分布と画像品質の指標の観点から、最先端の技術を向上する。
論文 参考訳(メタデータ) (2020-02-28T11:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。