論文の概要: Synthesize, Partition, then Adapt: Eliciting Diverse Samples from Foundation Models
- arxiv url: http://arxiv.org/abs/2411.06722v1
- Date: Mon, 11 Nov 2024 05:13:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:11:33.940444
- Title: Synthesize, Partition, then Adapt: Eliciting Diverse Samples from Foundation Models
- Title(参考訳): 合成, 分割, 適応: 基礎モデルから多変量サンプルを抽出する
- Authors: Yeming Wen, Swarat Chaudhuri,
- Abstract要約: 本稿では,多くのドメインで利用可能な豊富な合成データを活用し,基礎モデルから多様な応答を抽出する新しいフレームワークであるSynthesize-Partition-Adapt (SPA)を提案する。
影響関数などのデータ帰属法によって提供される信号を利用することで、SPAはデータをサブセットに分割し、それぞれがデータ固有の側面をターゲットにし、これらのサブセットに最適化された複数のモデル適応を訓練する。
- 参考スコア(独自算出の注目度): 14.037826400805741
- License:
- Abstract: Presenting users with diverse responses from foundation models is crucial for enhancing user experience and accommodating varying preferences. However, generating multiple high-quality and diverse responses without sacrificing accuracy remains a challenge, especially when using greedy sampling. In this work, we propose a novel framework, Synthesize-Partition-Adapt (SPA), that leverages the abundant synthetic data available in many domains to elicit diverse responses from foundation models. By leveraging signal provided by data attribution methods such as influence functions, SPA partitions data into subsets, each targeting unique aspects of the data, and trains multiple model adaptations optimized for these subsets. Experimental results demonstrate the effectiveness of our approach in diversifying foundation model responses while maintaining high quality, showcased through the HumanEval and MBPP tasks in the code generation domain and several tasks in the natural language understanding domain, highlighting its potential to enrich user experience across various applications.
- Abstract(参考訳): ファンデーションモデルからの多様な応答をユーザに提供することは、ユーザエクスペリエンスの向上と、さまざまな好みの調整に不可欠である。
しかし、特にグリージーサンプリングを使用する場合、精度を犠牲にすることなく、複数の高品質で多様な応答を生成することは困難である。
本研究では、多くのドメインで利用可能な豊富な合成データを活用し、基礎モデルから多様な応答を抽出する新しいフレームワーク、SPA(Synthesize-Partition-Adapt)を提案する。
影響関数などのデータ帰属法によって提供される信号を利用することで、SPAはデータをサブセットに分割し、それぞれがデータ固有の側面をターゲットにし、これらのサブセットに最適化された複数のモデル適応を訓練する。
実験の結果,コード生成領域におけるHumanEvalタスクとMBPPタスク,自然言語理解領域におけるいくつかのタスクを通じて,高品質を維持しながら基礎モデルの応答を多様化する手法の有効性が示された。
関連論文リスト
- A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
ヘテロジニアスフィードバックを用いた大規模言語モデル(LLM)の微調整フレームワークを提案する。
まず、不均一なフィードバックデータをSFTやRLHFなどの手法と互換性のある単一の監視形式にまとめる。
次に、この統合されたフィードバックデータセットから、性能向上を得るために高品質で多様なサブセットを抽出する。
論文 参考訳(メタデータ) (2024-08-05T23:20:32Z) - Flexible inference in heterogeneous and attributed multilayer networks [21.349513661012498]
我々は任意の種類の情報を持つ多層ネットワークで推論を行う確率的生成モデルを開発した。
インド農村部における社会支援ネットワークにおける様々なパターンを明らかにする能力を示す。
論文 参考訳(メタデータ) (2024-05-31T15:21:59Z) - Large Language Model as Attributed Training Data Generator: A Tale of
Diversity and Bias [92.41919689753051]
大規模言語モデル(LLM)は、最近、様々な自然言語処理(NLP)タスクのためのトレーニングデータジェネレータとして活用されている。
本稿では,多様な属性を持つプロンプトを用いたトレーニングデータ生成について検討する。
属性付きプロンプトは、結果のモデルの性能の観点から、単純なクラス条件プロンプトより優れていることを示す。
論文 参考訳(メタデータ) (2023-06-28T03:31:31Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
本稿では,ソース・クラウド・シナリオに基づいて学習したモデルの一般化を特徴付ける新しいスコアリング手法を提案する。
インタラクションコンポーネントはシナリオドメインの難易度を特徴付けることを目的としており、シナリオドメインの多様性はダイバーシティスコアで取得される。
提案手法の有効性をシミュレーションおよび実世界(ソース,ターゲット)の一般化タスクで検証した。
論文 参考訳(メタデータ) (2022-11-02T01:39:30Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
我々は、ソースタスクのソフトプロンプトから知識を伝達することで、プロンプトチューニングにおける数ショットのパフォーマンスを改善することに集中する。
我々はソースモデル(SESoM)のサンプル固有アンサンブルを提案する。
SESoMは、ソースモデルが出力されるときに、ターゲットの各サンプルに対するソースモデルのコントリビューションを個別に調整することを学ぶ。
論文 参考訳(メタデータ) (2022-10-23T01:33:16Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Abstractive Sentence Summarization with Guidance of Selective Multimodal
Reference [3.505062507621494]
モーダル間の相互関係を考慮したマルチモーダル階層選択変換器(mhsf)モデルを提案する。
提案したmhsfモデルの汎用性を,事前学習+微調整および新鮮トレーニング戦略を用いて評価した。
論文 参考訳(メタデータ) (2021-08-11T09:59:34Z) - Reinforced Data Sampling for Model Diversification [15.547681142342846]
本稿では,データを適切にサンプリングする方法を学ぶための新しいReinforced Data Smpling (RDS)法を提案する。
モデルダイバーシフィケーションの最適化問題である$delta-div$をデータサンプリングで定式化し,モデルダイバーシフィケーションを注入することで学習ポテンシャルと最適アロケーションを最大化する。
モデル多様化のためのトレーニング可能なサンプリングは,各種機械学習タスクの潜在能力を追求する競技組織,研究者,さらには開始者にとって有用であることが示唆された。
論文 参考訳(メタデータ) (2020-06-12T11:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。