Quantum Homotopy Analysis Method with Secondary Linearization for Nonlinear Partial Differential Equations
- URL: http://arxiv.org/abs/2411.06759v1
- Date: Mon, 11 Nov 2024 07:25:38 GMT
- Title: Quantum Homotopy Analysis Method with Secondary Linearization for Nonlinear Partial Differential Equations
- Authors: Cheng Xue, Xiao-Fan Xu, Xi-Ning Zhuang, Tai-Ping Sun, Yun-Jie Wang, Ming-Yang Tan, Chuang-Chao Ye, Huan-Yu Liu, Yu-Chun Wu, Zhao-Yun Chen, Guo-Ping Guo,
- Abstract summary: Partial differential equations (PDEs) are crucial for modeling complex fluid dynamics.
Quantum computing offers a promising but technically challenging approach to solving nonlinear PDEs.
This study introduces a "secondary linearization" approach that maps the whole HAM process into a system of linear PDEs.
- Score: 3.4879562828113224
- License:
- Abstract: Nonlinear partial differential equations (PDEs) are crucial for modeling complex fluid dynamics and are foundational to many computational fluid dynamics (CFD) applications. However, solving these nonlinear PDEs is challenging due to the vast computational resources they demand, highlighting the pressing need for more efficient computational methods. Quantum computing offers a promising but technically challenging approach to solving nonlinear PDEs. Recently, Liao proposed a framework that leverages quantum computing to accelerate the solution of nonlinear PDEs based on the homotopy analysis method (HAM), a semi-analytical technique that transforms nonlinear PDEs into a series of linear PDEs. However, the no-cloning theorem in quantum computing poses a major limitation, where directly applying quantum simulation to each HAM step results in exponential complexity growth with the HAM truncation order. This study introduces a "secondary linearization" approach that maps the whole HAM process into a system of linear PDEs, allowing for a one-time solution using established quantum PDE solvers. Our method preserves the exponential speedup of quantum linear PDE solvers while ensuring that computational complexity increases only polynomially with the HAM truncation order. We demonstrate the efficacy of our approach by applying it to the Burgers' equation and the Korteweg-de Vries (KdV) equation. Our approach provides a novel pathway for transforming nonlinear PDEs into linear PDEs, with potential applications to fluid dynamics. This work thus lays the foundation for developing quantum algorithms capable of solving the Navier-Stokes equations, ultimately offering a promising route to accelerate their solutions using quantum computing.
Related papers
- A general frame of quantum simulation for nonlinear partial differential equations [0.0]
The Schr"odingerisation technique of quantum simulation is expanded to any a nonlinear PDE.
For simplicity, we call it the HAM-Schr"odingerisation quantum algorithm''
arXiv Detail & Related papers (2024-06-22T11:33:09Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
We show that quantization can successfully lower the computational cost of inference while maintaining performance.
Our results on four standard PDE datasets and three network architectures show that quantization-aware training works across settings and three orders of FLOPs magnitudes.
arXiv Detail & Related papers (2023-08-14T09:21:19Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
Partial differential equations (PDEs) are often computationally challenging to solve.
We present a meta-learning based method which learns to rapidly solve problems from a distribution of related PDEs.
arXiv Detail & Related papers (2022-11-03T06:17:52Z) - Deep learning approximations for non-local nonlinear PDEs with Neumann
boundary conditions [2.449909275410288]
We propose two numerical methods based on machine learning and on Picard iterations, respectively, to approximately solve non-local nonlinear PDEs.
We evaluate the performance of the two methods on five different PDEs arising in physics and biology.
arXiv Detail & Related papers (2022-05-07T15:47:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Solving and Learning Nonlinear PDEs with Gaussian Processes [11.09729362243947]
We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations.
The proposed approach provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs.
For IPs, while the traditional approach has been to iterate between the identifications of parameters in the PDE and the numerical approximation of its solution, our algorithm tackles both simultaneously.
arXiv Detail & Related papers (2021-03-24T03:16:08Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
The goal of this work is to develop an ML-based PDE solver, that couples important characteristics of existing PDE solvers with Machine Learning technologies.
Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder-decoder model with PDE variables as both input and output features.
A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver.
arXiv Detail & Related papers (2020-05-17T19:54:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.