Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks
- URL: http://arxiv.org/abs/2411.06802v1
- Date: Mon, 11 Nov 2024 08:57:44 GMT
- Title: Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks
- Authors: Yuxiu Shao, David Dahmen, Stefano Recanatesi, Eric Shea-Brown, Srdjan Ostojic,
- Abstract summary: We show that a particular pattern of connectivity, chain motifs, have a much stronger impact on dominant eigenmodes than other pairwise motifs.
An overrepresentation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks.
These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.
- Score: 4.913318028439159
- License:
- Abstract: Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections. While decades of influential research have demonstrated the strong role of the basic EI cell type structure, to which extent additional connectivity features influence dynamics remains to be fully determined. Here we examine the effects of pairwise connectivity motifs on the linear dynamics in EI networks using an analytical framework that approximates the connectivity in terms of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant eigenvalues of the connectivity matrix and predicts the impact on responses to external inputs of connectivity motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity, chain motifs, have a much stronger impact on dominant eigenmodes than other pairwise motifs. An overrepresentation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks and generates a potential instability that requires revisiting the classical excitation-inhibition balance criteria. Examining effects of external inputs, we show that chain motifs can on their own induce paradoxical responses where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent feedback. These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Connectivity structure and dynamics of nonlinear recurrent neural networks [46.62658917638706]
We develop a theory to analyze how structure in connectivity shapes the high-dimensional, internally generated activity of neural networks.
Our theory provides tools to relate neural-network architecture and collective dynamics in artificial and biological systems.
arXiv Detail & Related papers (2024-09-03T15:08:37Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Equivalence of Additive and Multiplicative Coupling in Spiking Neural
Networks [0.0]
Spiking neural network models characterize the emergent collective dynamics of circuits of biological neurons.
We show that spiking neural network models with additive coupling are equivalent to models with multiplicative coupling.
arXiv Detail & Related papers (2023-03-31T20:19:11Z) - Uncovering the Origins of Instability in Dynamical Systems: How
Attention Mechanism Can Help? [0.0]
We show that attention should be directed toward the collective behaviour of imbalanced structures and polarity-driven structural instabilities within the network.
Our study provides a proof of concept to understand why perturbing some nodes of a network may cause dramatic changes in the network dynamics.
arXiv Detail & Related papers (2022-12-19T17:16:41Z) - Input correlations impede suppression of chaos and learning in balanced
rate networks [58.720142291102135]
Information encoding and learning in neural circuits depend on how well time-varying stimuli can control spontaneous network activity.
We show that in firing-rate networks in the balanced state, external control of recurrent dynamics, strongly depends on correlations in the input.
arXiv Detail & Related papers (2022-01-24T19:20:49Z) - Latent Equilibrium: A unified learning theory for arbitrarily fast
computation with arbitrarily slow neurons [0.7340017786387767]
We introduce Latent Equilibrium, a new framework for inference and learning in networks of slow components.
We derive disentangled neuron and synapse dynamics from a prospective energy function.
We show how our principle can be applied to detailed models of cortical microcircuitry.
arXiv Detail & Related papers (2021-10-27T16:15:55Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.