論文の概要: Adaptive Conditional Expert Selection Network for Multi-domain Recommendation
- arxiv url: http://arxiv.org/abs/2411.06826v1
- Date: Mon, 11 Nov 2024 09:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:07.193310
- Title: Adaptive Conditional Expert Selection Network for Multi-domain Recommendation
- Title(参考訳): マルチドメインレコメンデーションのための適応的条件付きエキスパート選択ネットワーク
- Authors: Kuiyao Dong, Xingyu Lou, Feng Liu, Ruian Wang, Wenyi Yu, Ping Wang, Jun Wang,
- Abstract要約: Mixture-of-Experts (MOE)は、最近マルチドメインレコメンデーション(MDR)におけるデファクトスタンダードになっている。
CESAAは、Conditional Expert Selection (CES) ModuleとAdaptive Expert Aggregation (AEA) Moduleで構成されている。
AEAは、専門家と特定のドメイン間の相関を強化するために、相互情報損失を利用しており、専門家の区別を大幅に改善している。
- 参考スコア(独自算出の注目度): 10.418133538132635
- License:
- Abstract: Mixture-of-Experts (MOE) has recently become the de facto standard in Multi-domain recommendation (MDR) due to its powerful expressive ability. However, such MOE-based method typically employs all experts for each instance, leading to scalability issue and low-discriminability between domains and experts. Furthermore, the design of commonly used domain-specific networks exacerbates the scalability issues. To tackle the problems, We propose a novel method named CESAA consists of Conditional Expert Selection (CES) Module and Adaptive Expert Aggregation (AEA) Module to tackle these challenges. Specifically, CES first combines a sparse gating strategy with domain-shared experts. Then AEA utilizes mutual information loss to strengthen the correlations between experts and specific domains, and significantly improve the distinction between experts. As a result, only domain-shared experts and selected domain-specific experts are activated for each instance, striking a balance between computational efficiency and model performance. Experimental results on both public ranking and industrial retrieval datasets verify the effectiveness of our method in MDR tasks.
- Abstract(参考訳): Mixture-of-Experts (MOE) は、MDR(Multi- domain recommendation)のデファクトスタンダードとなっている。
しかし、そのようなMOEベースの手法は、通常、各インスタンスにすべての専門家を雇い、拡張性の問題とドメインと専門家間の低差別化につながる。
さらに、一般的に使用されるドメイン固有ネットワークの設計によりスケーラビリティの問題が悪化する。
これらの課題に対処するため, 条件付きエキスパート選択 (CES) モジュールと適応型エキスパート集約 (AEA) モジュールからなるCESAAという新しい手法を提案する。
具体的には、CESはまず、まばらなゲーティング戦略とドメイン共有の専門家を組み合わせる。
そして、AEAは相互情報損失を利用して、専門家と特定のドメインの相関を強化するとともに、専門家の区別を大幅に改善する。
その結果、各インスタンスに対して、ドメイン共有の専門家と選択されたドメイン固有専門家のみがアクティベートされ、計算効率とモデルパフォーマンスのバランスがとれる。
MDRタスクにおける提案手法の有効性を検証するために,官能評価データセットと産業検索データセットを併用した実験結果を得た。
関連論文リスト
- LFME: A Simple Framework for Learning from Multiple Experts in Domain Generalization [61.16890890570814]
ドメイン一般化(Domain Generalization, DG)手法は、複数のソースドメインからのトレーニングデータを使用することで、目に見えないターゲットドメインにおける優れたパフォーマンスを維持することを目的としている。
この作業では、DGを改善するために、ターゲットモデルをすべてのソースドメインの専門家にすることを目的とした、複数の専門家(LFME)からの学習と呼ばれる、シンプルだが効果的なフレームワークを導入している。
論文 参考訳(メタデータ) (2024-10-22T13:44:10Z) - Flexible and Adaptable Summarization via Expertise Separation [59.26639426529827]
熟練した要約モデルは、柔軟性と適応性の両方を示すべきである。
我々は,Mixture-of-Expert SummarizationアーキテクチャであるMoeSummを提案する。
我々のモデルでは、一般とドメイン固有の要約能力の分離は、顕著な柔軟性と適応性を与えている。
論文 参考訳(メタデータ) (2024-06-08T05:31:19Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE)計算アマルガメート予測
Sparse MoEは、限られた数、あるいは1つの専門家だけを選択的に扱うことで、経験的に保存され、時にはパフォーマンスが向上する一方で、オーバーヘッドを大幅に削減する。
論文 参考訳(メタデータ) (2024-03-26T05:48:02Z) - BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation [59.1863462632777]
連続テスト時間適応(CTTA)は、学習済みの知識を維持しながら、継続的に見えない領域に効率的に適応するために必要である。
本稿では,CTTAの入力依存かつ効率的なモジュール化フレームワークであるBECoTTAを提案する。
提案手法は, トレーニング可能なパラメータを98%少なく抑えながら, 整合性や漸進性などの複数のCTTAシナリオに優れることを確認した。
論文 参考訳(メタデータ) (2024-02-13T18:37:53Z) - Robust Representation Learning for Unified Online Top-K Recommendation [39.12191494863331]
統合されたオンライントップkレコメンデーションのための堅牢な表現学習を提案する。
提案手法は,データフェアネスを保証するため,エンティティ空間における統一モデリングを構築する。
提案手法は実業務シナリオに対応するために,オンラインでのデプロイに成功している。
論文 参考訳(メタデータ) (2023-10-24T03:42:20Z) - Adaptive Mixture of Experts Learning for Generalizable Face
Anti-Spoofing [37.75738807247752]
ドメイン一般化(DG)に基づく反偽造防止アプローチが注目されている。
既存のDGベースのFASアプローチは、様々な目に見えない領域を一般化するために、ドメイン不変の特徴を常に捉えている。
このフレームワークは、ドメイン固有の情報を利用して、目に見えないソースドメインと未知のターゲットドメイン間のリンクを適応的に確立する。
論文 参考訳(メタデータ) (2022-07-20T13:02:51Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain Generalizable (DG) Person Re-identification (ReID)は、トレーニング時に対象のドメインデータにアクセスすることなく、見えないドメインをまたいでテストすることを目的としている。
本稿では,DG ReID のための OThers' Aggregation (META) を用いた Mimicking Embedding という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T08:06:50Z) - Multiple Domain Experts Collaborative Learning: Multi-Source Domain
Generalization For Person Re-Identification [41.923753462539736]
我々は、MD-ExCo(Multiple Domain Experts Collaborative Learning)という新しいトレーニングフレームワークを提案する。
MD-ExCoは普遍的な専門家といくつかのドメインエキスパートで構成されている。
DG-ReIDベンチマークの実験により、我々のMD-ExCoは最先端の手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2021-05-26T06:38:23Z) - Multiple Expert Brainstorming for Domain Adaptive Person
Re-identification [140.3998019639158]
本稿では、ドメイン適応型人物再IDのための複数の専門家ブレインストーミングネットワーク(MEB-Net)を提案する。
MEB-Netは、異なるアーキテクチャを持つ複数のネットワークをソースドメイン内で事前トレーニングする、相互学習戦略を採用している。
大規模データセットの実験は、最先端技術よりもMEB-Netの方が優れた性能を示している。
論文 参考訳(メタデータ) (2020-07-03T08:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。