Scientific machine learning in ecological systems: A study on the predator-prey dynamics
- URL: http://arxiv.org/abs/2411.06858v1
- Date: Mon, 11 Nov 2024 10:40:45 GMT
- Title: Scientific machine learning in ecological systems: A study on the predator-prey dynamics
- Authors: Ranabir Devgupta, Raj Abhijit Dandekar, Rajat Dandekar, Sreedath Panat,
- Abstract summary: We aim to uncover the underlying differential equations without prior knowledge of the system, relying solely on training data and neural networks.
We demonstrate that both Neural ODEs and UDEs can be effectively utilized for prediction and forecasting the LotkaVolterra system.
We observe how UDEs outperform Neural ODEs by effectively recovering the underlying dynamics and achieving accurate forecasting with significantly less training data.
- Score: 1.4633779950109127
- License:
- Abstract: In this study, we apply two pillars of Scientific Machine Learning: Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs) to the Lotka Volterra Predator Prey Model, a fundamental ecological model describing the dynamic interactions between predator and prey populations. The Lotka-Volterra model is critical for understanding ecological dynamics, population control, and species interactions, as it is represented by a system of differential equations. In this work, we aim to uncover the underlying differential equations without prior knowledge of the system, relying solely on training data and neural networks. Using robust modeling in the Julia programming language, we demonstrate that both Neural ODEs and UDEs can be effectively utilized for prediction and forecasting of the Lotka-Volterra system. More importantly, we introduce the forecasting breakdown point: the time at which forecasting fails for both Neural ODEs and UDEs. We observe how UDEs outperform Neural ODEs by effectively recovering the underlying dynamics and achieving accurate forecasting with significantly less training data. Additionally, we introduce Gaussian noise of varying magnitudes (from mild to high) to simulate real-world data perturbations and show that UDEs exhibit superior robustness, effectively recovering the underlying dynamics even in the presence of noisy data, while Neural ODEs struggle with high levels of noise. Through extensive hyperparameter optimization, we offer insights into neural network architectures, activation functions, and optimizers that yield the best results. This study opens the door to applying Scientific Machine Learning frameworks for forecasting tasks across a wide range of ecological and scientific domains.
Related papers
- Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
We propose a PINN framework with several improvements for forward and inverse problems for ODE systems.
The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations.
Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
arXiv Detail & Related papers (2024-06-07T17:40:38Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODE is the first semi-supervised approach to modeling dynamical systems with NODE.
We show significant performance improvements over a baseline Neural ODE model on multiple dynamical system modeling tasks.
arXiv Detail & Related papers (2023-10-19T19:17:12Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Knowledge-based Deep Learning for Modeling Chaotic Systems [7.075125892721573]
This paper considers extreme events and their dynamics and proposes models based on deep neural networks, called knowledge-based deep learning (KDL)
Our proposed KDL can learn the complex patterns governing chaotic systems by jointly training on real and simulated data.
We validate our model by assessing it on three real-world benchmark datasets: El Nino sea surface temperature, San Juan Dengue viral infection, and Bjornoya daily precipitation.
arXiv Detail & Related papers (2022-09-09T11:46:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
One of the major challenges is to infer the underlying causes, which generate the perceived data stream.
Success of machine learning based predictive models requires massive annotated data for model training.
Our experiments on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges to optimal accuracy with substantially fewer instances.
arXiv Detail & Related papers (2021-08-11T18:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.