Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach
- URL: http://arxiv.org/abs/2310.13110v1
- Date: Thu, 19 Oct 2023 19:17:12 GMT
- Title: Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach
- Authors: Yu Wang, Yuxuan Yin, Karthik Somayaji Nanjangud Suryanarayana, Jan
Drgona, Malachi Schram, Mahantesh Halappanavar, Frank Liu, Peng Li
- Abstract summary: TS-NODE is the first semi-supervised approach to modeling dynamical systems with NODE.
We show significant performance improvements over a baseline Neural ODE model on multiple dynamical system modeling tasks.
- Score: 10.20098335268973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling dynamical systems is crucial for a wide range of tasks, but it
remains challenging due to complex nonlinear dynamics, limited observations, or
lack of prior knowledge. Recently, data-driven approaches such as Neural
Ordinary Differential Equations (NODE) have shown promising results by
leveraging the expressive power of neural networks to model unknown dynamics.
However, these approaches often suffer from limited labeled training data,
leading to poor generalization and suboptimal predictions. On the other hand,
semi-supervised algorithms can utilize abundant unlabeled data and have
demonstrated good performance in classification and regression tasks. We
propose TS-NODE, the first semi-supervised approach to modeling dynamical
systems with NODE. TS-NODE explores cheaply generated synthetic pseudo rollouts
to broaden exploration in the state space and to tackle the challenges brought
by lack of ground-truth system data under a teacher-student model. TS-NODE
employs an unified optimization framework that corrects the teacher model based
on the student's feedback while mitigating the potential false system dynamics
present in pseudo rollouts. TS-NODE demonstrates significant performance
improvements over a baseline Neural ODE model on multiple dynamical system
modeling tasks.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
This work presents a partial differential equation (PDE) based framework which improves the dynamics modeling capability.
We propose a neural operator that can handle time continuously without requiring iterative operations or specific grids of temporal discretization.
Our framework opens up a new way for a continuous representation of neural networks that can be readily adopted for real-world applications.
arXiv Detail & Related papers (2023-02-02T03:47:52Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
This work demonstrates that injection of partially known information at an intermediate layer in a deep neural network can improve model accuracy, reduce model uncertainty, and yield improved convergence during the training.
The value of these physics-guided neural networks has been demonstrated by learning the dynamics of a wide variety of nonlinear dynamical systems represented by five well-known equations in nonlinear systems theory.
arXiv Detail & Related papers (2022-05-13T19:06:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
We present a novel approach that captures the underlying dynamics of a system by incorporating control in a neural ordinary differential equation framework.
Results indicate that a simple DyNODE architecture when combined with an actor-critic reinforcement learning algorithm outperforms canonical neural networks.
arXiv Detail & Related papers (2020-09-09T12:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.