論文の概要: BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes
- arxiv url: http://arxiv.org/abs/2411.06896v1
- Date: Mon, 11 Nov 2024 11:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:08.752494
- Title: BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes
- Title(参考訳): BuckTales : 野生アンテロープの多対象追跡と再同定のためのマルチUAVデータセット
- Authors: Hemal Naik, Junran Yang, Dipin Das, Margaret C Crofoot, Akanksha Rathore, Vivek Hari Sridhar,
- Abstract要約: BuckTalesは、野生動物の多目的追跡と再同定問題を解決するために設計された最初の大規模なUAVデータセットである。
MOTデータセットには12の高解像度(5.4K)ビデオを含む680トラックを含む120万以上のアノテーションが含まれている。
Re-IDデータセットには、同時に2つのUAVで捕獲された730人の個人が含まれている。
- 参考スコア(独自算出の注目度): 0.6267336085190178
- License:
- Abstract: Understanding animal behaviour is central to predicting, understanding, and mitigating impacts of natural and anthropogenic changes on animal populations and ecosystems. However, the challenges of acquiring and processing long-term, ecologically relevant data in wild settings have constrained the scope of behavioural research. The increasing availability of Unmanned Aerial Vehicles (UAVs), coupled with advances in machine learning, has opened new opportunities for wildlife monitoring using aerial tracking. However, limited availability of datasets with wild animals in natural habitats has hindered progress in automated computer vision solutions for long-term animal tracking. Here we introduce BuckTales, the first large-scale UAV dataset designed to solve multi-object tracking (MOT) and re-identification (Re-ID) problem in wild animals, specifically the mating behaviour (or lekking) of blackbuck antelopes. Collected in collaboration with biologists, the MOT dataset includes over 1.2 million annotations including 680 tracks across 12 high-resolution (5.4K) videos, each averaging 66 seconds and featuring 30 to 130 individuals. The Re-ID dataset includes 730 individuals captured with two UAVs simultaneously. The dataset is designed to drive scalable, long-term animal behaviour tracking using multiple camera sensors. By providing baseline performance with two detectors, and benchmarking several state-of-the-art tracking methods, our dataset reflects the real-world challenges of tracking wild animals in socially and ecologically relevant contexts. In making these data widely available, we hope to catalyze progress in MOT and Re-ID for wild animals, fostering insights into animal behaviour, conservation efforts, and ecosystem dynamics through automated, long-term monitoring.
- Abstract(参考訳): 動物行動を理解することは、自然および人為的変化が動物集団や生態系に与える影響を予測し、理解し、緩和することの中心である。
しかし、長期的、生態学的に関係のあるデータを野生環境で取得・処理することの課題は、行動研究の範囲を制限してきた。
無人航空機(UAV)の普及と機械学習の進歩により、航空追跡による野生生物のモニタリングの新たな機会が開かれた。
しかし、野生動物の生息地におけるデータセットの入手は限られており、動物追跡のためのコンピュータビジョンの自動化ソリューションの進歩を妨げている。
ここでは、野生動物のマルチオブジェクトトラッキング(MOT)と再識別(Re-ID)問題を解決するために設計された最初の大規模UAVデータセットであるBuckTalesを紹介します。
生物学者との共同で収集されたMOTデータセットには、12の高解像度(5.4K)ビデオの680トラックを含む120万以上のアノテーションが含まれている。
Re-IDデータセットには、同時に2つのUAVで捕獲された730人の個人が含まれている。
このデータセットは、複数のカメラセンサーを使用して、スケーラブルで長期的な動物の行動追跡を促進するように設計されている。
2つの検出器でベースライン性能を提供し、いくつかの最先端追跡手法をベンチマークすることで、我々のデータセットは、社会的および生態学的に関係のある状況下で野生動物を追跡するという現実の課題を反映している。
これらのデータを広く利用可能にすることで、野生動物のMOTおよびRe-IDの進歩を触媒し、動物行動、保全活動、生態系のダイナミクスに関する洞察を、自動化された長期監視を通じて促進したいと思っています。
関連論文リスト
- OpenAnimalTracks: A Dataset for Animal Track Recognition [2.3020018305241337]
動物足跡の自動分類と検出を容易にするために設計された,最初の公開ラベル付きデータセットであるOpenAnimalTracksデータセットを紹介する。
代表分類器と検出モデルを用いた自動フットプリント識別の可能性を示す。
われわれのデータセットは、動物の自動追跡技術の道を切り開き、生物多様性の保護と管理の能力を高めることを願っている。
論文 参考訳(メタデータ) (2024-06-14T00:37:17Z) - Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
ビデオに基づく行動監視は、動物の認知と行動を研究する方法を変える大きな可能性を秘めている。
今でも、エキサイティングな見通しと、今日実際に達成できるものの間には、かなり大きなギャップがある。
論文 参考訳(メタデータ) (2024-01-29T18:59:56Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36Kは動物のポーズ推定と追跡のための最初の大規模ベンチマークである。
このビデオは、30種の動物から収集・フィルタリングされた2,400のビデオクリップと、各ビデオの15フレームで構成されており、合計で36,000フレームとなっている。
我々は,(1)ドメイン内およびドメイン間移動学習環境下での単一フレームでの動物ポーズ推定,(2)未確認動物に対する種間ドメイン一般化テスト,(3)動物追跡による動物ポーズ推定の3つのモデルについて,いくつかの代表的モデルをベンチマークした。
論文 参考訳(メタデータ) (2022-06-12T07:18:36Z) - AnimalTrack: A Large-scale Benchmark for Multi-Animal Tracking in the
Wild [26.794672185860538]
野生でのマルチ動物追跡のための大規模ベンチマークであるAnimalTrackを紹介した。
AnimalTrackは10種類の一般的な動物カテゴリーから58の配列で構成されている。
我々は14の最先端の代表トラッカーを広範囲に評価した。
論文 参考訳(メタデータ) (2022-04-30T04:23:59Z) - Animal Kingdom: A Large and Diverse Dataset for Animal Behavior
Understanding [4.606145900630665]
大規模で多様なデータセットであるAnimal Kingdomを作成し、複数の注釈付きタスクを提供します。
私たちのデータセットには、関連する動物行動セグメントをローカライズする50時間のアノテーション付きビデオが含まれています。
本研究では,未確認新種動物を用いた行動認識の一般的な特徴と特定の特徴を学習する協調行動認識(CARe)モデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T02:05:15Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - Livestock Monitoring with Transformer [4.298326853567677]
我々は,集団飼育豚を対象としたエンドツーエンド行動監視システムを開発し,インスタンスレベルのセグメンテーション,トラッキング,行動認識,再識別タスクを同時実施する。
本稿では, トランスフォーマーアーキテクチャを用いて, グループ豚のインスタンスレベルの埋め込みを学習する, エンドツーエンド多目的家畜監視フレームワークであるStarformerについて紹介する。
論文 参考訳(メタデータ) (2021-11-01T10:03:49Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
我々はAcinoSetと呼ばれる野生のフリーランニングチーターの広範なデータセットを提示する。
データセットには、119,490フレームのマルチビュー同期高速ビデオ映像、カメラキャリブレーションファイル、7,588フレームが含まれている。
また、結果の3D軌道、人間チェックされた3D地上真実、およびデータを検査するインタラクティブツールも提供される。
論文 参考訳(メタデータ) (2021-03-24T15:54:11Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
465種にまたがる2.9M画像に基づいて訓練した,初期の深部畳み込みニューラルネットワークモデルを提案する。
長期的な目標は、科学者が種数と人口の健康状態のほぼリアルタイムでの分析から、保護的なレコメンデーションを行うことである。
論文 参考訳(メタデータ) (2020-09-24T01:04:18Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
オブジェクトのデータセットの追跡は2,907本の高解像度ビデオで構成され、平均で30分の長さの多様な環境でキャプチャされる。
ビデオの任意の時点で移動するオブジェクトにアノテータにラベルを付け、ファクトラムの後に名前を付けるように求めます。
我々の語彙は、既存の追跡データセットと著しく大きく、質的に異なる。
論文 参考訳(メタデータ) (2020-05-20T21:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。