Data-Driven Gradient Optimization for Field Emission Management in a Superconducting Radio-Frequency Linac
- URL: http://arxiv.org/abs/2411.07018v1
- Date: Mon, 11 Nov 2024 14:22:16 GMT
- Title: Data-Driven Gradient Optimization for Field Emission Management in a Superconducting Radio-Frequency Linac
- Authors: Steven Goldenberg, Kawser Ahammed, Adam Carpenter, Jiang Li, Riad Suleiman, Chris Tennant,
- Abstract summary: Field emission can cause significant problems in superconducting radio-frequency linear accelerators (linacs)
This research aims to utilize machine learning with uncertainty quantification to predict radiation levels at multiple locations throughout the linacs.
- Score: 1.8109000618851658
- License:
- Abstract: Field emission can cause significant problems in superconducting radio-frequency linear accelerators (linacs). When cavity gradients are pushed higher, radiation levels within the linacs may rise exponentially, causing degradation of many nearby systems. This research aims to utilize machine learning with uncertainty quantification to predict radiation levels at multiple locations throughout the linacs and ultimately optimize cavity gradients to reduce field emission induced radiation while maintaining the total linac energy gain necessary for the experimental physics program. The optimized solutions show over 40% reductions for both neutron and gamma radiation from the standard operational settings.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Abatement of Ionizing Radiation for Superconducting Quantum Devices [0.0]
Ionizing radiation has been shown to reduce the performance of superconducting quantum circuits.
We present a shallow underground facility to reduce the flux of cosmic rays and a lead shielded cryostat to abate the naturally occurring radiogenic gamma-ray flux.
arXiv Detail & Related papers (2024-03-01T23:38:56Z) - Attaining near-ideal Dicke superradiance in expanded spatial domains [0.0]
Superradiance for arrays of inverted emitters in free space requires interactions far beyond the nearest-neighbor.
Epsilon-near-zero (ENZ) materials, which exhibit infinite effective wavelengths, can mediate long-range interactions between emitters.
We employ a general method to assess the occurrence of superradiance, which is applicable to various coupling scenarios.
The findings of this work have prospective applications in quantum information processing and light-matter interaction.
arXiv Detail & Related papers (2023-11-30T08:01:57Z) - Disentangling the sources of ionizing radiation in superconducting
qubits [0.0]
Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors.
We measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and gamma's emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits.
We propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment.
arXiv Detail & Related papers (2022-11-24T13:33:21Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Perturbation approach in Heisenberg equations for lasers [77.34726150561087]
It is found that fluctuations of population significantly affect spontaneous and stimulated emissions into the lasing mode.
The method can be applied to various resonant systems in quantum optics.
arXiv Detail & Related papers (2022-01-08T18:24:37Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Transient nuclear inversion by X-Ray Free Electron Laser in a tapered
x-ray waveguid [0.36001039618949515]
We show how tapered x-ray waveguides can focus and guide radiation from x-ray lasers.
This feature can be used to significantly enhance spatial interactions of x-rays.
Our results anticipate the important role of tapered x-ray waveguides in the emerging field of x-ray quantum optics with nuclear transitions.
arXiv Detail & Related papers (2021-04-16T02:06:52Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.