論文の概要: UniHR: Hierarchical Representation Learning for Unified Knowledge Graph Link Prediction
- arxiv url: http://arxiv.org/abs/2411.07019v5
- Date: Sun, 28 Sep 2025 07:49:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 14:13:47.126376
- Title: UniHR: Hierarchical Representation Learning for Unified Knowledge Graph Link Prediction
- Title(参考訳): UniHR:知識グラフリンク予測のための階層的表現学習
- Authors: Zhiqiang Liu, Yin Hua, Mingyang Chen, Yichi Zhang, Zhuo Chen, Lei Liang, Huajun Chen, Wen Zhang,
- Abstract要約: 実世界の知識グラフ(英語版) (KGs) は標準的な三つの事実だけでなく、より複雑で異種な事実も含んでいる。
ハイパーリレーショナルKG,時間的KG,ネストした事実KGを3次元表現に統一する学習フレームワークであるUniHRを提案する。
5種類のKGにまたがる9つのデータセットの実験は、UniHRの有効性を示し、統一表現の強い可能性を強調している。
- 参考スコア(独自算出の注目度): 59.84402324458322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world knowledge graphs (KGs) contain not only standard triple-based facts, but also more complex, heterogeneous types of facts, such as hyper-relational facts with auxiliary key-value pairs, temporal facts with additional timestamps, and nested facts that imply relationships between facts. These richer forms of representation have attracted significant attention due to their enhanced expressiveness and capacity to model complex semantics in real-world scenarios. However, most existing studies suffer from two main limitations: (1) they typically focus on modeling only specific types of facts, thus making it difficult to generalize to real-world scenarios with multiple fact types; and (2) they struggle to achieve generalizable hierarchical (inter-fact and intra-fact) modeling due to the complexity of these representations. To overcome these limitations, we propose UniHR, a Unified Hierarchical Representation learning framework, which consists of a learning-optimized Hierarchical Data Representation (HiDR) module and a unified Hierarchical Structure Learning (HiSL) module. The HiDR module unifies hyper-relational KGs, temporal KGs, and nested factual KGs into triple-based representations. Then HiSL incorporates intra-fact and inter-fact message passing, focusing on enhancing both semantic information within individual facts and enriching the structural information between facts. To go beyond the unified method itself, we further explore the potential of unified representation in complex real-world scenarios, including joint modeling of multi-task, compositional and hybrid facts. Extensive experiments on 9 datasets across 5 types of KGs demonstrate the effectiveness of UniHR and highlight the strong potential of unified representations.
- Abstract(参考訳): 実世界の知識グラフ(英語版)(KGs)は、標準的な三重項に基づく事実だけでなく、補助的なキー-値対を持つ超相対的事実、追加のタイムスタンプを持つ時間的事実、事実間の関係を暗示するネストされた事実など、より複雑で異種な事実も含んでいる。
これらのリッチな表現形式は、実世界のシナリオにおける複雑な意味論をモデル化するための表現性と能力の強化により、大きな注目を集めている。
しかし、既存の研究の多くは、2つの主な制限に悩まされている:(1)特定の種類の事実のみをモデル化することに集中しているため、複数の事実型を持つ現実のシナリオに一般化することが困難である、(2)これらの表現の複雑さのため、一般化可能な階層的(インターファクトおよびイントラファクト)なモデリングを達成するのに苦労している。
これらの制約を克服するため、学習最適化階層データ表現(HiDR)モジュールと統合階層構造学習(HiSL)モジュールからなる統一階層表現学習フレームワークUniHRを提案する。
HiDRモジュールは、ハイパーリレーショナルKG、テンポラルKG、ネストされた事実KGをトリプルベース表現に統一する。
そして、HiSLは、ファクト内およびファクト間メッセージパッシングを取り入れ、個々のファクト内のセマンティック情報の拡張と、ファクト間の構造情報の強化に重点を置いている。
統一された手法そのものを超えて、マルチタスク、構成的およびハイブリッドな事実の合同モデリングを含む、複雑な実世界のシナリオにおける統一表現の可能性をさらに探求する。
5種類のKGにまたがる9つのデータセットに対する大規模な実験は、UniHRの有効性を示し、統一表現の強い可能性を強調している。
関連論文リスト
- Efficient Relational Context Perception for Knowledge Graph Completion [25.903926643251076]
知識グラフ(KG)は知識の構造化された表現を提供するが、しばしば不完全性の課題に悩まされる。
従来の知識グラフ埋め込みモデルは、表現力のある特徴を捉える能力に制限がある。
逐次情報をモデル化し,動的文脈の学習を可能にする三重受容アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-12-31T11:25:58Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - HyperFormer: Enhancing Entity and Relation Interaction for
Hyper-Relational Knowledge Graph Completion [25.399684403558553]
ハイパーリレーショナル知識グラフ(HKG)は、属性値の等式をトリプルに関連付けることによって、標準的な知識グラフを拡張する。
本稿では,三重項の実体,関係,等化子の内容をエンコードする局所レベルシーケンシャル情報を考慮したモデルであるHyperFormerを提案する。
論文 参考訳(メタデータ) (2023-08-12T09:31:43Z) - Few-shot Link Prediction on N-ary Facts [70.8150181683017]
ハイパーリレーショナル・ファクト(LPHFs)のリンク予測は、ハイパーリレーショナル・事実の欠落要素を予測することである。
Few-Shot Link Prediction on Hyper-Relational Facts (PHFs) は、サポートインスタンスが限定されたハイパーリレーショナルな事実において、欠落したエンティティを予測することを目的としている。
論文 参考訳(メタデータ) (2023-05-10T12:44:00Z) - Learning Representations for Hyper-Relational Knowledge Graphs [35.380689788802776]
複数のアグリゲータを用いて超関係事実の表現を学習するフレームワークを設計する。
実験では、複数のデータセットにまたがるフレームワークの有効性を実証した。
フレームワークにおける各種コンポーネントの重要性を検証するためのアブレーション研究を行っている。
論文 参考訳(メタデータ) (2022-08-30T15:02:14Z) - DHGE: Dual-View Hyper-Relational Knowledge Graph Embedding for Link
Prediction and Entity Typing [1.2932412290302255]
本稿では、エンティティのハイパーリレーショナルインスタンスビューと、エンティティから階層的に抽象化された概念のハイパーリレーショナルビューを含むデュアルビューハイパーリレーショナルKG構造(DH-KG)を提案する。
本稿では、DH-KG上のリンク予測とエンティティ型付けタスクを初めて定義し、医療データに基づいてWikidataから抽出された2つのDH-KGデータセットJW44K-6KとHTDMを構築した。
論文 参考訳(メタデータ) (2022-07-18T12:44:59Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
文書と要約を構造化された意味表現(MR)に分解するFactGraphを提案する。
MRは、コアセマンティックの概念とその関係を記述し、文書と要約の両方の主要な内容を標準形式で集約し、データの疎結合を減少させる。
事実性を評価するための異なるベンチマークの実験では、FactGraphは以前のアプローチよりも最大15%優れていた。
論文 参考訳(メタデータ) (2022-04-13T16:45:33Z) - Learning Representations of Entities and Relations [0.0]
この論文は,リンク予測タスクに取り組むことを目的とした知識グラフ表現の改善に焦点を当てている。
最初のコントリビューションはHypERであり、リンク予測性能を単純化し改善する畳み込みモデルである。
第2のコントリビューションは比較的単純な線形モデルであるTuckERで、このモデルが導入された時点では、最先端のリンク予測性能が得られた。
第3の貢献は、双曲空間に埋め込まれた最初のマルチリレーショナルグラフ表現モデルである MuRP である。
論文 参考訳(メタデータ) (2022-01-31T09:24:43Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
将来の事実を予測する鍵は、歴史的事実を徹底的に理解することです。
TKGは実際には異なるタイムスタンプに対応するKGのシーケンスである。
グラフ畳み込みネットワーク(GCN)に基づく新しいリカレント進化ネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-21T05:12:21Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Message Passing for Hyper-Relational Knowledge Graphs [7.733963597282456]
本稿では,このようなハイパーリレーショナルな知識グラフをモデル化可能なメッセージパッシンググラフエンコーダであるStarEを提案する。
StarEは、任意の数の付加情報(修飾子)を主三重項と共に符号化し、修飾子と三重項の意味的役割をそのまま保持することができる。
実験により、StarEベースのLPモデルは、複数のベンチマークで既存のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-22T22:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。