Unified Bayesian representation for high-dimensional multi-modal biomedical data for small-sample classification
- URL: http://arxiv.org/abs/2411.07043v1
- Date: Mon, 11 Nov 2024 14:51:24 GMT
- Title: Unified Bayesian representation for high-dimensional multi-modal biomedical data for small-sample classification
- Authors: Albert Belenguer-Llorens, Carlos Sevilla-Salcedo, Jussi Tohka, Vanessa Gómez-Verdejo,
- Abstract summary: BALDUR is a novel Bayesian algorithm designed to deal with multi-modal datasets and small sample sizes in high-dimensional settings.
This model was tested over two different neurodegeneration datasets, outperforming the state-of-the-art models and detecting features aligned with markers already described in the scientific literature.
- Score: 0.8890696402391598
- License:
- Abstract: We present BALDUR, a novel Bayesian algorithm designed to deal with multi-modal datasets and small sample sizes in high-dimensional settings while providing explainable solutions. To do so, the proposed model combines within a common latent space the different data views to extract the relevant information to solve the classification task and prune out the irrelevant/redundant features/data views. Furthermore, to provide generalizable solutions in small sample size scenarios, BALDUR efficiently integrates dual kernels over the views with a small sample-to-feature ratio. Finally, its linear nature ensures the explainability of the model outcomes, allowing its use for biomarker identification. This model was tested over two different neurodegeneration datasets, outperforming the state-of-the-art models and detecting features aligned with markers already described in the scientific literature.
Related papers
- Dataset Distillation for Histopathology Image Classification [46.04496989951066]
We introduce a novel dataset distillation algorithm tailored for histopathology image datasets (Histo-DD)
We conduct a comprehensive evaluation of the effectiveness of the proposed algorithm and the generated histopathology samples in both patch-level and slide-level classification tasks.
arXiv Detail & Related papers (2024-08-19T05:53:38Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Dual-View Data Hallucination with Semantic Relation Guidance for Few-Shot Image Recognition [49.26065739704278]
We propose a framework that exploits semantic relations to guide dual-view data hallucination for few-shot image recognition.
An instance-view data hallucination module hallucinates each sample of a novel class to generate new data.
A prototype-view data hallucination module exploits semantic-aware measure to estimate the prototype of a novel class.
arXiv Detail & Related papers (2024-01-13T12:32:29Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Multi-view Data Visualisation via Manifold Learning [0.03222802562733786]
This manuscript proposes extensions of Student's t-distributed SNE, LLE and ISOMAP, to allow for dimensionality reduction and visualisation of multi-view data.
We show that by incorporating the low-dimensional embeddings obtained via the multi-view manifold learning approaches into the K-means algorithm, clusters of the samples are accurately identified.
arXiv Detail & Related papers (2021-01-17T19:54:36Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - A Multi-criteria Approach for Fast and Outlier-aware Representative
Selection from Manifolds [1.5469452301122175]
MOSAIC is a novel representative selection approach from high-dimensional data that may exhibit non-linear structures.
Our method advances a multi-criteria selection approach that maximizes the global representation power of the sampled subset.
MOSAIC's superiority in achieving the desired characteristics of a representative subset all at once is demonstrated.
arXiv Detail & Related papers (2020-03-12T19:31:10Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.